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INTRODUCTION

SoME account of the history of this five-volume course of higher
mathematics has been given in the Introduction to Vol. T of the
present English edition.

The first Russian edition of the present volume appeared (in 1926)
under the joint authorship of Professor Smirnov and the late Professor
J. D. Tamarkin but later editions, prepared after Professor Tamarkin
had settled in the U.S.A. and consisting of a drastic revision of (and
many additions to) the original material, contained only Professor
Smirnov’s name. This volume is made up of a course of advanced
calculus which is of great use to students of mathematics and which
provides the physicists and engineers with a complete set of those
tools, based upon the theory of functions of real variables, which
are indispensable for the study of the classical branches of mathe-
matical physics.

It consists essentially of five distinct parts, although there are
strong links connecting all of them. There is a full discussion of the
solution of ordinary differential equations with many applications to
the treatment of physical problems. This is followed by an account
of the properties of multiple integrals and of line integrals, with a
valuable section on the theory of measurable sets and of multiple
integrals.

The mathematics necessary to the discussion of problems in classical
field theories is discussed in a section on vector algebra and vector
analysis; the methods developed are illustrated not only by applica-
tions to physics but also by an account of the elements of differential
geometry in three-dimensional space.

After this there comes an elementary but full account of Fourier
Series,

The principles and techniques developed in these sections are then
applied to the discussion of the solution of the partial differential
equations of classical mathematical physics.

The clarity of Prof. Smirnov’s exposition and the width of his
knowledge of the mathematical techniques effective in the study of
the physical sciences makes the whole course a most valuable one for

xi



xii INTRODUCTION

the student anxious not only to learn the methods of advanced cal-
culus but also to understand the influences which have motivated

their development.
I. N. SNEDDON

PREFACE TO THE SIXTH EDITION

Tuis edition of the second volume differs considerably from the pre-
vious one. The first chapter of the previous edition, containing the
theory of complex numbers, the principles of higher algebra, and
integration of functions, was transferred to the first volume. At the
same time, all material referring to the principles of vector algebra
was taken from Volume I to Volume II. This material was incorporated
in Chapter IV, together with vector analysis

The presentation of the remaining chapters underwent substantial
changes. This refers particularly to Chapters III, VI and VII. A special
paragraph containing the theory of dimensions and the rigorous theory
of multiple integrals was added to Chapter ITI. A certain re-distribution
of material was carried out in Chapter VI, and a proof was added of
the closure equation on the basis of Weierstrass’ theorem on polyno-
mial approximation to continuous functions. Chapter VII now contains
additional material on the propagation of spherical and cylindrical
waves and Kirchhoff’s formula for the solution of the wave equation.
The explanation of linear differential equations with constant coef-
ficients is introduced at first without using the symbolic method.

First paragraphs of each chapter have retained their explanatory
character. The book is arranged in such a way that the basic material
in larger type can be studied without reference to the examples or
complementary theoretical material printed in small type.

I should like to express my deep gratitude to Prof. Fikhtengol'ts,
who has read the manuscript of this edition, for his valuable sugges-
tions concerning the style and arrangement of the book.

V. SMIRNOV

xiii



PREFACE TO THE FOURTEENTH EDITION

THE GENERAL arrangement of the present edition is the same as that
of the previous edition. However, small alterations were introduced
in many places with the aim of clarifying the style and achieving
greater readability.

Most substantial changes were carried out in Paragraph 9 (Chapter
II), “Supplementary remarks on the theory of multiple integrals”.

In Chapter VII, devoted to simple problems of mathematical physics,
the formulation of conditions for the solution of a series of basic
problems was clarified. References to matters explained in detail in
Volume IV have been added in several places in Chapter VII,

V. SMImRNOV

Xiv

CHAPTER I

ORDINARY DIFFERENTIAL EQUATIONS

§ 1. Equations of the first order

1. General principles. A differential equation is defined as an
equation which contains, in addition to independent variables and
unknown functions, derivatives or differentials of the unknown
functions [1, 51]. If the functions appearing in a differential equation
depend on a single independent variable, the equation is called an
ordinary differential equation. On the other hand, if partial derivatives
of the functions with respect to certain of the independent variables
appear in the equation, it is called a parfial differential equation.
We confine ourselves to ordinary differential equations in the present
chapter, the greater part of which is devoted to the case of a single
equation containing one unknown function.

Let x be the independent variable, and y the required function of
this variable. The general form of the differential equation becomes:

D(x,y, ¥’ y",...,y"M) =0.

The order of the differential equation is defined as the order n of
the highest order derivative of the function thatappears in the equation.
We shall consider ordinary differential equations of the first order
in the present article. The general form of this equation is:

D(r,y,y’)=0 (1)
or, on solving with respect to y’:
y ==y (2)
If a function
Y= ¢(z) (3)

Satisfies the differential equation, i.e. if the equation reduces to an
l'dentity on replacing y and y’ by ¢(z) and ¢’(z), the function g(x)
8 said to be a solution of the differential equation.

1



2 ORDINARY DIFFERENTIAL EQUATIONS [2

The problem of finding a solution of a differential equation is
alternatively referred to as the task of integrating the equation.

If 2 and y are considered as the coordinates of points on a plane,
differential equation (1) [or (2)] expresses a relationship between
coordinates of points on a certain curve and the slopes of the tangents
to the curve at these points. A curve corresponds to the solution (3)
of the equation, the points and tangential slopes of which satisfy
the equation. This curve is referred to as an integral curve of the given
differential equation.

In the simplest case, when the right-hand side of equation (2) does
not contain y, a differential equation is obtained of the form:

y = ().
Finding the solutions of this equation is the primary task of the
integral calculus [I, 86], and the total set of solutions is given by the
formula:

y={fz)de + C,

where C is an arbitrary constant. We thus obtain in this elementary
case a solution of the differential equation containing an arbitrary
constant. We shall see that a solution containing an arbitrary constant
is also obtained in the general case of a first order differential equa-
tion; such a solution is referred to as the general solution of the equa-
tion. On assigning different numerical values to the arbitrary constant,
we obtain the various so-called particular solutions of the equation.

We give in the following sections some particular types of first
order equation, integration of which leads to evaluation of indefinite
integrals — or, as it may sometimes be expressed, their inlegration
reduces to quadrature.t

2. Equations with separable variables. On replacing y’ in equation (2)
by the quotient dy/dx, multiplying both sides by dx, and carrying all
terms to the left-hand side, we can write (2) in the form:

M(z,y)dxr + N (x,y)dy =0, (4)

which will be more convenient in some cases. Both variables x and y
play an identical role here in the equation, so that (4) does not bind
us to the choice of unknown function: we can take either z or y for
this, as we wish.

T Evaluation of an integral has a direct connection with evaluation of an
area, whence the term ‘quadrature’.

2] EQUATIONS WITH SEPARABLE VARIABLES 3

We assume that each of the functions M(z, y) and N(x, y) consists
of the product of two factors, one of which depends only on z, and
the other only on y:

M \(x) My(y) do + N,(x) N,(y) dy = 0. (5)

On dividing both sides of the equation by M,(y) N;(z), we reduce it
to the form:
M, (z)
Ny(x)

et i =0, ©)
so that the coefficient of do now depends only on z, and the coefficient
of dy only on y. Equation (5) is called an equation with separable
variables [1, 93], whilst the method itself of reduction to the form (6)
is called separation of the variables.

The left-hand side of equation (6) is the differential of the follow-
ing expression:

M, (x) ¥)
N = +JM2 dy,

and the equating to zero of the differential of this expression means
that the expression itself is equal to an arbitrary constant:

M, (x) 2y -
N de [ i =, @

where C is the arbitrary constant. This formula gives an infinite se

of solutions and, from the geometrical point of view, is the implici

equation of a family of integral curves. If

the quadratures are carried out in (7) and 14

|
we solve the equation with respect to ¥,
we obtain the explicit equation of the W
family of integral curves (the solution of  Bf------- s
the differential equation): A
7
0 N

Example. The area OAMN, bounded by the
coordinate axes, the segment AM of a curve
and its ordinate MN (Fig. 1), is equal in mag-

nitude to a rectangular area OBCN with the same base ON = x and with
height 4:

Fia. 1

X X

1
[yd:v::my; 17=—x—‘—[‘ydx. (8)
0 0



4 ORDINARY DIFFERENTIAL EQUATIONS {2

The magnitude 7 is called the average ordinate of the curve in the interval (0, ).
Let us find the curves whose average ordinates are proportional to the
extreme ordinate NM. We have on the basis of (8):

X
§y do = kay, (9)
1)

where & is the coefficient of proportionality. On differentiating both sides of
equation (9), we get the differential equation:

= ky + kay’, or ay’ = ay, (10)
where
(11)

Unwanted solutions may have been introduced on differentiation, since the
equality of the derivatives implies only that the functions themselves differ

Y4 C=201C<% Y
M
B ¢
B 1€ C=%6
oy | 7 gl 0=12
v g N C=#2
=15
C=20-10~"%
Fic. 2 Fic. 3

by a constant. There are no unwanted solutions in the present case, however.
It follows from equation (10), obtained by differentiation of (9), that both
sides of (9) can only differ by a constant; but it is immediately evident that
both these sides are zero for = 0, so that the constant in question is zero,
i.e. every solution of (10) is also a solution of (9). We pass to the integration
of (10). It can be written as:

and the variables can be separated:
dy _, dz

Y x

3] HOMOGENEQOUS EQUATIONS 5

We obtain on integration:
logy=alogz + O, or y= 0z (12)
where C = ¢Ct is an arbitrary constant.

From (11), as k increases from 0 to - o, a decreases from -+ to —1,
and we must therefore take @ > —1, so that the integral on the left-hand side
of (9) never becomes meaningless. We have a = 0 for k = 1, and (12) gives
as the obvious solution a family of straight lines parallel to axis OX. We have
a = 2 for k = 1/3, which gives the family of parabolas (Fig. 2)

y == Czx?,
for which the average ordinate is equal to a third of the extreme ordinate.
With & = 2, we get the family of curves:
Y= c
Vo

for which the average ordinate is twice the extreme ordinate (Fig. 3).

3. Homogeneous equations. 4 homogeneous equation is defined as an
equation of the form:

y =f (—g—)T . (13)

We preserve the previous independent variable x but introduce a
new function u instead of y:

y = zu, whence " = u - xu’. (14)

We transform our equation:

u + xu’ = f(u) or x%ﬁ—=f(u)—u.

Separation of the variables gives:

dx du

= T o= =

We obtain, on denoting the coefficient of du by (u):

logz + (v, (u)du = C,,
whence
x = Ce~§v™4 or g = Cy(u),

where ' = ¢! is an arbitrary constant.

t We remark that the function g(z, y) of two variables is a function simply
of the ratio y/x when, and only when, the magnitude of g(z, y) is unchanged
on multiplying # and y by an arbitrary factor ¢, i.e. p(tx, ty) = @(x, y). This
condition is equivalent to ¢(z, y) being a homogeneous function of 2 and y
of zero degree [1, 151].



6 ORDINARY DIFFERENTIAL EQUATIONS 3

On returning to the previous variable, we can write the equation
of the family of integral curves in the form:

o= Cy (L) (19

We consider a transformation of similitude in the plane XOY
with centre of similitude at the origin. The transformation amounts
to the point (z, y) being transferred to the new position:

x, =kv; yy=ky (k>0) (16)

or, which comes to the same thing, it amounts to multiplying the
length of the radius vector to every point of the plane by &k whilst
preserving the direction. If M is the original position of a point, and
M, the position of the same point after transformation, we have
(Fig. 4):

OM,:0M =z,:x=y,:y =k

On applying transformation (16) to equation (15), we get the
equation:

z, = kCy (%), (17)

which does not differ from equation (15), in view of the arbitrariness
of the constant C, i.e. transformation (16) does not alter the total
set of curves (15) but only moves one curve of family (15) to the posi-
tion of another curve of the same family. Any curve of family (15)
can evidently be obtained from one definite curve of the family by
using transformation (16), with appropriate choice of the constant
k. The result obtained can be expressed as follows: all the integral
curves of a homogeneous equation can be obtained from one integral curve
by means of the transformation of similitude, with centre of similitude at
the origin.
Equation (13) can be written as:

tan a = f(tan 68),

where tan a is the slope of the tangent, and 8 is the angle formed
by the radius vector from the origin with the positive direction of
axis OX. Equation (13) thus establishes a connection between angles
a and 6, such that the tangents to the integral curves of a homogeneous
equation, drawn at the points of intersection of the curves with a straight
line through the origin, must be mutually parallel (Fig. 4).

It follows obviously from this property of the tangents that the
transformation of similitude with centre of similitude at the origin

3] HOMOGENEOUS EQUATIONS 7

transforms one integral curve to another integral curve, since, on
increasing the lengths of radius vectors of points of the curve in the
same ratio, the directions of the tangents at the ends of the radius
vectors are unchanged (Fig. 5).

14
pu—
i —
P f\i
o —
Y|y,
6 X X
0 X—=_
=_———-X1—-———| Tf
Fic. 4 Fig. 5

If we apply the above transformation to the integral curve consist-
ing of a straight line passing through the origin, we get the same
line after transformation, so that in this case the above method of
obtaining the set of integral curves from one of them fails.

Exzample. To find the curves such that the length MT of the tangent from
its point of contact to its intersection with OX is equal to the length OT
along OX (Fig. 6).

The equation of the tangent has the form:

Y —y=y"(X —2),

where (X, Y) are the current coordinates of the tangent. We find the intercept
of the tangent on OX by putting ¥ = 0:

and by hypothesis, T2 = (7?2, which gives us [I, T7]:

y? . AL
=)

Wwhence we obtain the differential equation:

r_ 2oy
Yy = a2 — gt 7

(18)

which evidently belongs to the homogeneous type.



8 ORDINARY DIFFERENTIAL EQUATIONS (3
We introduce a new function u instead of y, in accordance with the formula:
y=uau; y =au +u

We have, on substituting in equation (18):

, 2u du wu 9
U= O T T 1w =0. (19)

which gives, on separating the variables:

dw L g0, (20)
Y z u - ud
Integration gives us:
s 1) _ g
— =C,

or, on returning to the previous variable y:
224y —Cy=0, (21)

i.e. the required curves are circles passing
through the origin and touching the axis 0X at
this point (Fig. 6).

We divided both sides of equation (19) by
(u + u?) in order to pass from (19) to (20), and
we might have lost the solution u = 0, or, what
comes to the same thing, y = 0. We see on
substituting in equation (18) that this is in fact

Fia. 6 a solution. The solution is contained in equation
(21), however; we can obtain it by dividing both
sides of (21) by C, then setting ¢ = 0.

Each circle of family (21) can be got from any one of them by the f,ra,ns-

formation of similitude with centre of similitude at the origin, so that (Fig. 6):

OMl _ OMz . OM3 —

ON, ON, ON,

The differential equation:
dy _y (ﬂiﬂi) , (22)
dz ax +by+e¢
reduces to a homogeneous form, as we shall now show. We introduce new
variables £ and 7 in place of x and y:

e=&+a y=n+8, (23)

where a and 8 are constants which we proceed to define.
Equation (22) becomes in the new variables:

_d_n__f( at +byp+aa+bf-4c )
d&8 T\a s+ b +ae+bB+e

4] LINEAR EQUATIONS; BERNOULLI'S EQUATION 9
We define a and f by the conditions:

ae+b3+¢=0, apa+bpf+ec =0.

The equation now reduces to the homogeneous form:

I'E
ﬂ_f a+b£
d = _— .
d a1+b1%

Transformation (23) corresponds to parallel displacements of the axes,

with the origin becoming the point of intersection (a, ) of the straight
lines

ax +by +¢=0 and ax-+by-+c¢ =0. (24)

The results previously obtained will thus be applicable to equation (22),
with the only difference that the role of origin will be played by the
point (a, ).

If the straight lines (24) are parallel, the transformation mentioned can-
not be carried out. But in this case, as we know from analytic geometry,
the coefficients in equations (24) must be proportional:

b

a =—b‘-l and ax + by = A (ax + by);

i 8
a
on introducing a new variable u instead of y:

u = ax -+ by,
it can easily be seen that we obtain an equation with separable variables.

We shall encounter below an extremely important application of
homogeneous equations, to the investigation of fluid flow.

4. Linear equations; Bernoulli’s equation. An equation of the form:
Y+ P@)y+Qx)=0. (25)

is called a linear equation of the first order.
We start by considering the equation with no term Q(x):

2+ P(x)z2=0.
The variables are separable here:
i:— 4+ P(z)dz =0,

and we get:
2= Ce P dx (26)



10 ORDINARY DIFFERENTIAL EQUATIONS [4

We integrate the given linear equation (25) by using the method
of varying the arbitrary constant, ie. we seek a solution of the
equation in a form analogous to the form (26) for z:

y = ue~ P, (27)
where wu is no longer a constant, but the required function of z. We get
g q g
by differentiation:

y =ue” §P(x)dx _ p (1) we— §P) dx

Substitution in equation (25) gives:
w e §P®I L Qx)=0
w o= —Q (x)esp(")d", whence 4 = C — jQ (x)esp(x)d"dm.
We finally get, by equation (27) for y:
y=e $P@& [0 — [Q(@)el PO da]. (28)

When determining y by this formula, we only need to take one each
of the values of the indefinite integrals

jP(m) dz and SQ(m) ef P dx dgp

since the addition of arbitrary constants to these only changes the
value of C.

If we replace them by definite integrals with variable upper limits
[I, 96], we can re-write (28) as:

- fP(x) dx z Szp(x) dx
5 [ x] (29)

C— (Q)e”

Zo

y=¢e

where z, is a definitc number, though chosen arbitrarily. On sub-
stituting the value x = @, for the variable upper limit, the right-
hand side of the formula written is equal to C, since integrals with
identical upper and lower limits are equal to zero; in other words,
the constant C in formula (29) is the value of the function y at x = Z,.
This value, which we denote by ¥,, is called the initial value of the
solution.
We denote this fact by writing:

Yy [x:xo = Yo- (30)
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If the initial value of the required solution is given for x = z,, (29)
yields a completely defined solution of the equation:

y=e Yo— fQ@)e (31)

Zy

_ 2S'p(x) dx P §P(x) dx
“ [ i m]

Condition (30) is called the initial condition and is equivalent
geometrically to the integral curve being sought which passes through
the given point (4, ¥).

If we take Q(x) = 0, we obtain the solution of the homogeneous
equation

y + P(z)y=0.
gatisfying condition (30):
— Py ax
y=y,e ” . (31y)

It follows from (29) that solutions of a linear differential equation
have the form: :

Y=, @) C+ (), (32)

i.e. y is a linear function of the arbitrary constant.
Let g, be a solution of equation (25). On setting

y=y1+2,

we get the equation for z:

2+ Pa)z+ [y + P )y + Q)] =0.

The sum appearing in square brackets is equal to zero, since y,; is a
solution of equation (25) by hypothesis. It follows that z is a solution
of the equation when the term @ (z) is absent and is defined by
(26), whence: )

Y=y, + Ce §Pdx (33)

We now assume that a further solution y, is known of equation (25),
and we let this solution be obtained from (83) with C = a:
Yg = Y, + ae” IPE dx (34)

. If we eliminate e~ % from (33) and (34), we obtain an expression
or the solution of a linear equation in terms of two of its solutions
Y and y,:

Y=y +C ¥z —¥), (35)
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where C, is an arbitrary constant replacing C |a in the previous notation.
The following relationship follows from (35):

which shows that the ratio (y,—y)/(y—y,) is a constant, i.e. the family of
integral curves of a linear equation is a family of curves that divide
the segment of ordinate between any two curves of the family in a constant
ratio.

If two integral curves L, and L, of a linear equation are known,
any other integral curve L is defined by the constant value of the
ratio (Fig. 7)
i4, _ BB, _ 00, _ DD,
44 BB 00 DD

It follows from this equation that
chords A4,B,, AB and 4,B, must
either meet in a single point or be
parallel. On letting B,B, approach
indefinitely near to 4,4,, the direc-
tions of these chords become the
directions of the tangents to the
curves at A4;,, A and 4, and we
obtain the following property of the tangents to the integral curves
of a linear equation: the tangenis to the integral curves of a linear
equation at the points of intersection of the curves with a line drawn
parallel to OY either intersect in a single point or are parallel.

Fie. 7

Ezamples. 1. We consider the transient current in a circuit with self-
inductance. Let i be the current, v the voltage, B the resistance in circuit,
and L the self-inductance.

The following relationship is valid:
3 di
v=Ri 4+ L G’

whence we obtain the linear equation for i:
di R . w

I T AL A

We take R and L as constants and v as a given function of time ¢, and evalu-
ate the integrals appearing in formula (31):

t t t ¢

R R Jpdt 1
[Pa=[Fra—g-rn e arm — e ar.
0 0 0 0

4] LINEAR EQUATIONS; BERNOULLI'S EQUATION 13

If we let ¢, denote the initial value of 4, i.e. the value of the current at t = 0,
(31) gives us the following formula for determining 7 at any required instant:

).

1
¥

R, t R
. L' /. 1 Lt
t=e (’to-f-T'"Ue

0

We have in the case of constant voltage v:

Ry
N EO v L v
. (1 R)e TE

The factor e~ F/L rapidly decreases as ¢ increases, and in practice the process
an be assumed to have reached the steady state after a short space of time, the
urrent being then given by Ohm’s law: 7 = o/R.

In the particular case of 7, = 0 we get the formula:

i:%—(l—e_

t ) ' 37

for the current in a closed circuit.
The constant L/R is called the tme constant of the circuit.

We consider a voltage v of sinusoidal form, v = 4 sin w¢. We obtain by using
(31):

R 4 t R,
. L . L
i=e [zo+T[eL sinwtdt].
0
It is easily seen [I, 201] that:
Bt R t R
L . L L . wl?
=) t = —_—_—
f sinwtdt =e [ Py LRy -z sin wf — I LR cos wt]

and therefore:

t

[l

t
je ginwtdt = e

[aalfes)

t
RL . wl? wl?
[——aﬂ Lz——_,_ 7o sin wt — T +——R2 cos wt]—i— LI Rt TR

We obtain on substituting in the expression for :
_ R,
olLA ) L RA LA

1= (10+w2—L2w e +W—F—Rz— sin ot — W—_F—RE—COSCUL
(38)
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The first term, containing the factor e~ R/L, is rapidly damped, and in practice
the current will be given in a short space of time after £ = 0 by the sum of
the two remaining terms of (38). This sum consists of a sinusoidal quantity of
the same frequency w as the voltage v, but with different amplitude and phase.
We also notice that the sum giving the steady-state current does not depend
on the initial value of the current ¢,.

2. The resistance R cannot be reckoned as a constant in switching processes,
when a spark appears. It increases from an initial value B, to infinity (at
the instant 7 of breaking contact).

It is sometimes permissible to express the relationship between R and ¢
by the formula:

R=——-R° _ Byr
1—~t— T—1
T
This leads us to the equation:
ds Ry7 v
& TIe—niT T ="

To express ¢ in parts of 7, we need to introduce a new variable = instead
of ¢, according to the formula:

t = 1z,

where 2 varies from 2 = 0 (initial instant) to # = 1 (the instant of quenching
the spark, of breaking contact). The equation takes the form:

di Ryr . T

e —— = 39
dx + L —x) ¢ L 0 (39)
with the condition:
o =1 (= +)
X=0 1} 0 Ro °
On applying (28), we easily obtain the general solution of the equation
R Ry
i=(l—a) L [iL’— [a—o F dx+C],
where two cases can be distinguished:
L L
1) RO #F T 2) —RO— = T.
We find in case 1):
Ryt
, T L
1= Ror_T(l—«x)—i—O(l—x)

and we determine the arbitrary constant C on substituting z = 0:

o7 . vT
Ror—T+0; O=t= Ryx—L "’

19 =

4] LINEAR EQUATION; BERNOULLI'S EQUATION 15

and finally,
Ryt
= 1— " Ya—ax F
1= Fr—L (1 —z)+ (70 ROT—L) (I—=z)y . (40,)
We proceed similarly and find in case 2):
i=(1—2) [io—%’ log (1 —x)]. (40,)

Bernoulli’s equation is a generalisation of the linear differential
equation (25):

Y+ P@)y+Qx)y"=0, (41)
where the exponent m can be considered as differing from zero and
unity, since the equation is linear in these cases. We divide both
gides by y™:

y"y + P@)y "+ Qx) =0
and we introduce a new unknown function » instead of y:
u=ym; w=(1—my "y’
The equation now reduces to the form:

v =P (@)u+Q@)=0,

P,(z) = (1 —m) P(x) and @, (2) = (1 — m) Q(a),

i.e. Bernoulli’s equation reduces to a linear equation by substituting
u = y1-™ and is then integrated as a linear equation.

We remark that integration of the differential equation of the
form:

where

Y +P@y+Q@)y*+R@)=0, (41,)

known as Riccati’s equation, does not reduce to quadrature in the
case of arbitrarily chosen coefficients. It can reduce to a linear equation
if any one particular solution is known. Let y,(z) be in fact a solution
of equation (41,), i.e.:

Y1+ P @)y, +Q(2)yi + R(x) = 0. (*)

We introduce into (41,) a new required function » instead of y,
where

1
y:y1+;-

On substituting in (41;) and taking into account equation (*), we
Obtain a linear equation for u of the form:

w — [P (x) 4 2Q (¢) y;]u — Q (x) = 0.
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The general solution of this equation has the form: u =C p(z) + p(z).
If we substitute this expression for u in the equation for y written
above, we get the general solution of Riccati’s equation in the form:

y = Coy(2) + ¥, (%)
Co,(x) + pa(2) )

5. Finding the solution of a differential equation with a given
initial condition. As we have said, a first order differential equation

y =f(z, ¥) (42)

consists of a relationship between the coordinates (z,y) of a point
and the slope y” of the tangent at this point. We assume that f(z, )
is a single-valued, continuous function of (, ). A definite tangent
with a slope equal to f(z,y) now
14 corresponds, by (42), to any point
| of the plane at which f(w, y) is de-
L/{M" fined. On indicating the direction
M3 . .
of this tangent by an arrow passing
through the corresponding point, we
Mo arrive at a tangent field in the plane,
A every tangent being associated with
3 some point of the plane. The integral
Ao x curves of equation (42) are the curves
the tangents of which are the tan-
gents of the field and they may be
designated the integral curves of the
given field.

The magnetic field at the earth’s
surface may be taken as an example. If we regard a portion of the
earth’s surface as a plane, the direction shown by the magnetic needle
at each point gives us a definite tangent at every point.

We now turn to the question of finding the integral curves of
equation (42). The complete definition of the position of an integral
curve requires the further assigning of some point through which
the integral curve must pass, e.g. its intersection with the line x =
parallel to OY; or, what amounts to the same thing, we must assign
the initial value y, that the required function y must take for the
specified value x = x,:

Fic. 8

Y lx=xo = Yo-
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The integral curve passing through the given point (z,, y,) can be
drawn approximately by using Euler’s method, explained below.

We mark out a mesh of small equal squares in the coordinate
plane by lines parallel to the axes, then we draw from the origin,
in the negative direction of OX, the intercept OP, of unit length
(Fig. 8). We substitute = z, and y = y, in the right-hand side of
equation (42) _aﬂd having found the value of f(z,, y,), we mark off
the intercept OA4, equal to this value on the ordinate axis. The line
PA, will evidently have a slope equal to f(z,, y,) and will therefore be
parallel to the tangent to the integral curve at the point (2o, ¥o).
We now proceed to the approximate construction of the integral
curve itself in the form of a step line.

We produce from the point (z,, y,) a line My M,, parallel to P4,
and hence having a slope y; = f(z,, ¥,). Let M,(z,, y,) be the first
point of intersection of this line with any side of our square mesh.
We cut off a segment OA, on the ordinate axis equal to f(z,, ¥,), and
produce through the point M,(w,, ;) a line M, M,, parallel to P4,
[and therefore having a slope y{ = f(z,, ;)], to its first intersection
at M,(x,, y,) with a side of our square mesh, and so on. This con-
struction can be carried out both in the direction of increasing,
and in the direction of decreasing, abscissae. The step line obtain-
ed in this way represents approximately the required integral
curve.

We further remark that a different scale can be used for drawing
the intercepts OP and OAy, O4,, - .. than is employed for the coordi-
Pates x and y, since the directions of PA,, PA4,, ... are evidently
independent of the choice of scale for the intercepts.

Th:is construction makes it clear by inspection that one and only
Z;le m)tegral curve of equation (42) passes through a given point

0 yo .
ha:'hjs asser'tior'l is susceptible of rigorous proof if the function f(z, y)
: properties in addition to continuity. For instance, if f(z, y) s @
single-valued, continuous function of its arguments in the neighbourhood
of the point (o, Yo) and has a continuous derivative with respect to y,
‘mf and only one integral curve of equation (42) passes through the
pm’nt_ (Zo» Yo)-
ca;ﬁl(lis ttl’ijox:;r;lg;ev;mch 3; pres.ent we accept without proof, i§ usually
difforentin nce an unigqueness fheorem .ft.)r the solution of a

equation with a given initial condition. The theorem is
Proved at the end of the next chapter.
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We supplement the above geometrical explanation with an analytic
explanation of the theorem in an important particular case, viz,
in the case where the right-hand side of equation (42) consists of a
series expansion into positive integral powers of the differences
(z — ) and (y — ) [L, 161];

8

fla, )= Sap@— zo)? (Y — Yo)?

?,¢=0

1

which is convergent if the absolute values of the differences are
sufficiently small.
Here, the solution of equation (42) satisfying the initial condition

Ylxmxo = Yo » (43)

can be written as a Taylor series in positive integral powers of the
difference (x — x,), the coefficients of the series being completely
defined by equation (42). In fact, on substituting x = %, and ¥y =¥,
in the right-hand side of (42), we obtain the value y, of the first
derivative y’ at z =z, We get on differentiating (42) with re-
spect to x:

[ af (x’ /l/) af (EIJ, y) .

if we substitute © = @y, ¥ = ¥, Y’ = Yo in the right-hand side of
this equation, we find the value yg of the second derivative y” at
x = x,. Further differentiation of the equation written above with
respect to  gives us an equation in y’ and so on. We thus determine
the Taylor series:

yzyo‘{‘%(x_mo)’i"g_f_(x_%)z'{_“" (44)

which in fact gives, for values of x near x,, the solution of (42) satisfy-
ing the initial condition (43).

The method of undetermined coefficients may be used as an
alternative to the above method of determining successively the
derivatives at © = x,. We replace y on both sides of (42) by a power
series with undetermined coefficients:

Y=Y+ a (@ — ) +a(®— )+ ... (45)

By expanding the right-hand side in powers of (x — x,) and
equating coefficients of like powers of (x — ®m,), the coefficients
ay, @, ... can be successively determined. It can easily be shown
that series (44) and (45) are identical.
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Example. We find the solution of the equation:

y== (46)
satisfying the initial condition:
] Ylxmo=1, (47)
as a power series:
y=1+4 S‘ agz’,

s=1

where the constant term has been taken epual to unity in view of the initial
condition (47).
We differentiate the series:

o
’ s—1
Y = 2‘ sag X" .
s=1

We substitute these expressions for y and ¥’ in equation (46):
a, + 20,2 + 30322 +...4+ (m+ 1) an, 2" ... =
1

z(l4+0,z+aa2+...4an_ " 1 4..0).

v

We equate coefficients of like powers of z on both sides and obtain
the relationships shown in the table. It is
clear from these that

x0 =0
G =0 =qg;= ... =gy = ... =03 % 1
! 20, = -
a==l'a——1' ~a—1 ; 2
4 T orgE v T 1
nl4 a? 3aa=~2—al
ie. finally [1, 126 1
; y [ ] a3 4a4=-2—a2
x2 1 (x2\2 1 [x2)3 P
) T Bl —|*
”‘+4+2z(4)+3!(4)+ " 1
z (n+Day, = g %n-1
x!
1 x? n A SR AR
+..'+H(-Z) +...=e .

. 6. The Euler—Cauchy method. The approximate construction for an
n_ltegral curve of equation (42) given in the previous article can be
simplified by using lines only, parallel to OY, instead of the mesh
O.f squares. This modified Eulerian method results in a relatively
Simple and handy means of evaluating approximately the ordinate y
of an integral curve for a previously assigned abscissa x.
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Let M (o y,) be the initial point of the integral curve (Fig. 9).
We produce a line with a slope f(z, y,) from this point to its inter-
section with the line = %y, parallel to OY, in the point M;. Let
4, be the ordinate of M,. It is evidently given by the relationship:

Y1 — Yo = [ (To» Yo) (@1 — o) »
since M N and NM, are given by the numbers (2;,—2Z,) and (¥1—¥o)
whilst the tangent of angle NM oM, is equal to f(Zo y,) by con-

struction.
We draw M, M, with slope f(x, y,) from the point (zy, ¥;) to its
intersection at M, with the next line & = &, parallel to OY. The

1)
M3(X31g3)
'Ao M|2(X2:yz
Mty )
A,
AzMo(XarUn) ——1{N
X
P 0 Xo ‘X1 X |X3
Fia. 9

ordinate of the point of intersection will be given by a relationship
similar to the above:

Yo — Y1 = [ (@ Y1) (X2 — zy)-

Proceeding in the same way from the point My(®s, ¥s), We can
next obtain the point My(zs, y3) and so on. The lines P4y, P4, - -
have the same role in Fig. 9 as in Fig. 8.

We now suppose that, for a given value of @, we have to find the

value y of the solution of equation (42) that satisfies the initial

condition (43). By what was said above, we must proceed as follows:
we subdivide the interval (o, %) by points:

x0<xl<m2<x3<...<xn_2<mn_1<m... (48)
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and then obtain the ordinates i
formulae: Y1» Yo» -« +» Yn—y in accordance with the

Y1 — Yo = [ (Zo» Yo) (&1 — T,)
Yo— Y= f (.’1)1, yl) (-’132 — xl)

Ys — Y2 = f (xzv yz) (.’E3 — .’Ez)

Yn——Yn—o= f (mn—ﬁi ?/n—z) (mn—l - xn—z)

Y — Yn— = f(xn—-lf yn—l) (x — xn—-l)'

; W?h the con('iitions laid down in [5] for the properties of the
t::1((;1 ion f(z, y), if the number of sub-intervals increases, with each
nding to zero, the quantity Y obtained from (49) will tend to the

true ordinate y of the required inte
' rd; gral curve provi i
is sufficiently close to the initial z,. provided the given z

We easily find, on adding equations (49) term by term:
Y~ Y =Y+ [ (@, Yo) (@1 — o) + f (1, 1) (X — @) +.. .+
+ [ @2 Yn—2) (Tn—y — Tnp) + [ (Trey, Yny) (@ — 2,,).  (50)

In the elementary case of the equation:

Y =)

the formula written takes the form:

Yo =+ é;f (ms) (xs+1 - ms) .

which, i

el :ihvgeinlzgozvl[l, 87], gives an approximate expression for the

oquation. gral v, -+ xj. f(z) dx, i.e. for the solution of the given

Th . .

follo ;in computation .1n accordance with (49) is carried out in the

Wo % I?irdter. The f1r§t of equations (49) gives thedifference (y, — ¥,).

¥ ) S. . lc1> Yos obt.;am the second ordinate ¥, then find the differen(():e

lattor z:) wi bth-e aid of .the second of equations (49). We add this
%, obtain the third ordinate y, then find (y; — ¥,) with the

aid of the third of e i
uati 4 : .
these differences toqy(,. ons (49), and so on. We find ¥ by adding all

Ezampl,
G ple. We apply the method given to the solution of equation (46) with

Mtial condition (4
0 0.1, (47). We shall take all the intervals (z,, 2,), (2, %,) ... equal
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xy zy
2 4y = o) < 0.1 e

0 1 ‘ 1 0 1
Toa | 1 %rﬁogsﬁﬁ " o005 | 1002
02 | 1005 | 0.005 ‘ 0.0101 |  1.0100
03 | 1.0151 0.1523 \ 0.0152 1.0227
04 | 10303 0.2061 0.0206 1.0408
0.5 | 1.0509  0.2627 0.0263 1.0645
0.6 | 10772 0.3232 0.0323 1.0942
C o | 1105 0.3883 0.0388 1.1303
0.8 ‘ 1.1483 04593 | 0.0459 L1
0.9 | 11942 0.5374 0.0537 1.2244
[ S S

The results of the computation are shown in the accompanying table. The
first column contains z, the gocond contains the corresponding ¥, the third

she value of f(z,y), i.e. zy/2, the fourth the difference 4y = Y511 — Y5 8nd
the last the value of the ordinate of the accurate integral curve ¥y = &,
As can be seen from the table, the error with z = 0.9 is less than 0.031,

ie. amounts to roughly 2.5%.

7. The general solution. On altering the value of y in the initial

condition:
y|x=xo =1%o

we obtain an infinite set of solutions of equation (42), or in geometrical
terms, a family of integral curves depending on the arbitrary constant
Yo, this being the ordinate of the point of intersection of an integral
curve with the line = Z,. Instead of appearing in the solution as
the initial value of y, the arbitrary constant can also appear in the

general form:
y = ¢(,C)- (51)
Such a solution of (42), including the arbitrary constant, is called
the general solution of the equation, as already mentioned [1]. It can

also appear in implicit form:
w(z,y, C)=0. (52)
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. ;vaiv:assiglnta definite numerical value to the constant C, we obtain
inite solution of (42), which is referred t oul
e soation e ) 0 as a particular solution
. guish the curve passing through i
. . a giv
pon;:; (@ yo).from the family of curves of the general sxoglutiong(Sg;rl
we have to find the numerical value of C from the condition: ,

¥ (2o, 40, C) = 0. (53)
g‘he df;ollowing is the converse of the problem of integrating a first
3; er d ffleren’mal equation: given the family of curves (52), depending
a single parameter C, it is required to form the di, ;
. ; cter O, e differential )
forveuhwh this f.amzly is the family of the general integfal. eauation
e get on differentiating the given equation (52) with respect to z:

6‘/’(@! Y, C) all’(x» Y, C)

Elimination of i
' parameter C from equations (52 i
the required differential equation of family (5(2)') e (54) gives s

¢(x! y: y,) = 0.

After solution with re
; spect to the arbitrary const
solution (52) can be written in the form: Y sty the general

w(m,y) =C. (55)

. ZZ:. obtai‘n the general solution in this form in the case of the
, ;‘t h;or:l W:;h s:parable variables [2]. The function w(z, y) on the
~hand side of (55), i . g )
tion (42). (55), is called a solution of the differential equa-
We ;
of (42)mf}c1:t Opt&m a constajnt on substituting any particular solution
of © and y }lbnhthls' function, i.e. the solution of (42) is a function
Y such that its total derivative with respect to x is zero, by virtue

of (42).

On takin o
g the total derivat i .
equation (55), we get [I, 6;}3: ive with respect to  of both sides of

9o(z, y) oo (z,
% T %yy) ¥’ =0,

or, on repla,cin ‘b .
hypothesis, Weghzve;y f(z, y), inasmuch as y is a solution of (42) by

aw(x) y) aw( s
w T aa; ) flz,y) = 0. (56)
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The function o(z,y) must satisfy this equation independently of the
“-precise solution of (42) that we have substituted in this function. But
in view of the arbitrariness of the initial condition (43) in the exist-
ence and uniqueness theorem, we can take any values we please of
¢ and y, provided we take all the solutions of equation (42), i.e.
the function o(z, y) must satisfy equation (56) as an identity in x and y.
We finally show how a solution of equation (42) can be checked
when it is given implicity:

w, (z,y) =0. (57,)

We obtain as above the equation:

6 ’ 6 b
Sofny) g S (g,y) =0, (57,

t be satisfied at all points of curve (57,), i.e. equation (57,)

which mus
d not as an identity in z

is to be satisfied only by virtue of (57,) an
and y: in short, (57,) must be a consequence of (57;).

Ezample.

We take, for instance, the equation:
, 1 —3af— y?
¥y = 2y

Tt is easily shown that the circle:
at+yt—1=0
is a solution of this equation. Here, in fact, f(z,y) = (1 — 32?2 — y%)[22y and
oy, y) = o* +y* — 1, so that (57;) reads:

p— — 2 22
2x+2y——1——%w;;——y——=0, j.e. 1___%_?/_=o,

which is evidently satisfied by virtue of the equation of the circl
that the general integral of the given differential equation is:

23 + xyt — z =C.
We get by substituting in (56) o, y) ="+ xy? —
1— 3:1:2_-_-_112__ —0,

and it is obvious that this equation is satisfied identically for all  and y.

Let the differential equation be given implicitly with respect to y':
D(x,y,y’) = 0.

eo. We show

- of

(58)
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If we solve it for y’, we reduce it to form

now be a many-valued function. We suppose éﬁzl’ t;};(’ffcég;?{l) o
different xtaluejs, so that there are m different values of 4’ for a fvon
z a.\,nd y, ie. instead of a single tangent corresponding to a Siven
pfnnt, we have m different tangents. As a result, we now h o m
dlffe'rent tangent fields in the plane instead of (;ne tan‘z taiY' eld.
?:ldmtegx;aﬁ tcurlve passes through a given point for eaci lrcl)f t;f;ia'
ields, so that altogether m integral curves of e i i

through the given point. Yet the general integrg]u?)?(()?S;svgv)illWﬂl Eags
only one arbitrary constant, ie. will have the form (52); ‘o tho
other hand, equation (53) must in general give m disti ' elucn
and not one value, for C. et values,

We . .
b somr:izlr{lecoliiagn' exampl;)a in connection with these last remarks, where
ining an arbitrary constant is not stri i ’
: ctl
solution. We take the differential equation: Y epesiing the general

y?—axy =0. (59)
The left-hand side can be factorized, giving y’(y” — z) = 0, so that in essen
, co

we have two distinet differential equations:

- 2 = 0 —_ —
with general solutions Y andy’ — 2 =0,

1
— 2 C=
Y 2 ¢ C=0. (69;)

The last two equations can be combined:
1
(y—C) (Q*vaz—o)=0,

givin i

OVerygpt;hiztgs?:}ial solution of equation (59). Two integral curves pass through

Goy o o e plane: the: straight line (59,) and the parabola (59,). Evidently
» gives a solution of (59) containing an arbitrary constant; this

solution is not the
eneral i
equation y’ — 0. g al solution of (59), but only the general solution of the

E .
in tg:&f';zﬁl(ﬁ)f, :lll‘ (58), can have a solution which is not contained
(52) with Soyrfn o e .general solution, i.e. cannot be obtained from
callod o le partlc}ﬂar value of constant C. Such a solution is
finding & lilil ar lsc;l.utlon of the' equation. We go into the problem
Strictly Spea;j(; u I:}I:S, and their geometrical interpretation, in {10].
nood op g, the conctapts of solution and general solution are
urther explanation. We shall not go into the matter
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however, inasmuch as the existence and uniqueness theorem for
the solution with a given initial condition is a more natural basis
for a theoretical treatment of differential equations. Finding the
general solution, as described above for a particular type of equation,
certainly offers a very useful practical means of constructing the
solutions of differential equations. We remark here that if, on passing
from the differential equation to its general solution, we at no step
violate the equivalence of succesive equations, there can be no
singular solutions, i.e. every solution is contained in the general
solution, on assigning various numerical values to C. In the case
when the equivalence of the equations is lost, the singular solutions
must be sought among the missing solutions, as will be done in [8]
and [9].

By general solution is naturally understood a solution of the dif-
ferential equation containing an arbitrary constant, from which can
be obtained all the solutions defined by the existence and uniqueness
theorem for initial conditions filling a certain domain of the (z, y)
plane. This domain is determined by the function f(2, y) appearing
in equation (42). It is natural to describe solutions of the differential
equation as singular solutions when they have the property that the
conditions guaranteeing the existence and uniqueness theorem are
not fulfilled at any point of the corresponding integral curve. All
these definitions require certain assumptions, of course, regarding the
function f(z, y) or D(x, ¥, Y’ appearing in equation (42) or (58).

On replacing y* by the arbitrary constant C, in equation (42) or
(58), we get the family of curves:

flz,y)=C, or P(,y,0)=0.

Each curve of this family is the locus of points of the plane
which are associated with the same slope, the family as a whole
being referred to as a family of isoclines of the given differential
equation, i.e.a family of curves of the same slope. In the particular
case of the magnetic field at the earth’s surface, the isoclines are
lines along which the direction of the magnetic needle is constant.

The isoclines for the homogeneous equation of [3] were lines
passing through the origin.

We shall note the cases in which an jsocline is an integral curve
of the equation, i.e. gives a solution of the equation. We take the
isocline:

D(x,y,b) = 0,
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correjsponding to the particular value C, =b. At points of the
isocline, the differential equation gives the same slope, inasmuch
as ¥y = b.' A necessary and sufficient condition for the isocline to
be a solution is that the tangent to the isocline is also of slope b at
every point of it — whence it immediately follows that the isocline
must be. a straight line of slope b, since y” = b gives y = bz + ¢
where ¢ is a constant. Hence, an isocline is a solution only when it z;*
a straight line and when the direction of this line coincides with the

constant direction of the tangents, as defined b ; .
; ’ y the differential ;
at points of the isocline. if equation

Ezample. To find the curves for which the length of the normal MN is a

constant a (Fig. 10). Use of the expression for th
c - e length
gives us the differential equation: gt of the normal (1, 77)

+ y¥Vl+y?=a. (60)
We get by s i i i i
oy g y squaring both sides of the equation and solving with respect
dy i Va* — y?
T E (61)

The right-hand side of the last equation is only defined for |y | < a, ie

" in the strip between the lines

y=a and y= —a, (62)

since otherwise the expression under the s i

sinc : quare root is negative; at e i

mside the §tr1p, y’ has two distinct values. ¢ Yo pomt
The variables are separable in equation (61):

_ydy

Voo = + dx. (63)
We easily find on integrating:

(@ — CF + y* =a?, (64)

Zii :}}1:5??;31 of cu'clfas with f:entres on OX and radius equal to a (Fig. 10).
with o circ;les a,xf"e sxtl?ated in the 'strip bounded by the straight lines (62),
The t.’mnsmeosnof family (64_1) passing through every point inside the strip.
and o onsition t;t?m };aquatxo.n (61) to (63) required division by ya? —y2,
Soon by Gieoct onks tl,st lt;t:) so}};ll::r; }ij, = :'tafmitght have been lost. It is easily
: : s isin fact a solution of (61).Th i
;‘::zlp;‘ej;rg;ed geometrxcal}y by th'e lines (62), which are not( in)cludzsoii‘;1 t;z:
from (64 e general solution (64); in other words, the solution cannot be found
) whatever the value of constant C, i.e. it is a singular solution.
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Substitution of the constant C, for y” in equation (60) gives us the family of

isoclines: ‘

+yl1+C=aq,

These are lines parallel to OX. The tangents to circles (64) along these lines

maintain a constant direction.

The lines (62), in particular, are also isoclines, with y” maintaining a constant
value zero along them, which coincides with the slope of the lines themselves:
g0 that the lines are at the same time solutions of equation (61).

v
W
a
SN A BN A Y I A YO O A Y /7Y VX
w NJ

Fic. 10

Inside the strip given by the lines (62) we have two differential equations
(61): one corresponding t0 the () sign and the other to the (—) sign. The
circles (64) inside the strip are obtained in accordance with the existence and
uniqueness theorem. The theorem becomes inapplicable at points of the lines
y = Za, and these represent singular solutions of equation (60) or (61).

8. Clairaut’s equation. An equation of the type
y=ay + o) (65)

is called a Clairaut equation. Substitution of an arbitrary constant C
for y’ gives us a family of isoclines of the equation:

y = 2C + ¢(C). (66)

Every isocline is seen to be a straight line, with slope equal to the
constant that we substituted for y’, i.e. the direction of each of lines
(66) is the same as the constant tangential direction defined by the
differential equation at points of the line. Recalling what was said
in the previous article, we can assert that each of lines (66) is also
a solution of equation (65), i.e. the family of isoclines (66) is at the
same time the family of the general solution of (65).

We now indicate a second method of obtaining the general solution
of equation (65), whereby the singular solution of the equation is
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found, as well as its general solution. We use the notation y’ = p
and re-write (65): ’
y = zp + o(p). (67)

It amounts to finding p as a function of z, say w(x), so that on
substituting p = w(z) on the right-hand side of (67) we get for y
a function of = such that its derivative ¥y’ is: ¥’ = p = w(z). We
take differentials of both sides of (67), expand the left-hand side as
f‘,y = y'dx = pdx, and obtain the first order differential equation
or p:

pdz = pde + zdp + ¢'(p)dp or [z+ ¢’ (p)]dp=0.

.We get two cases on equating each factor to zero. The case dp = 0
gives p = C, where C is an arbitrary constant; substitution of p = C
in equation (67) again gives us the general solution (66). In the second
case we have the equation:

z+ ¢ (p)=0. (68)

On eliminating p from (67) and (68), i.e. from the two equations:

y==2p+¢(p) and x4 ¢ (p)=0, (69)

we likewise obtain a solution of equation (65), which does not contain
an arbitrary constant. This is usually a singular solution of the
equation.

‘ T‘he geometrical problem of finding the curve, given the properties
of its tangent, reduces to Clairaut’s equation, assuming that the
properties relate only to the tangent itself, and not to the point of
contact. The equation of the tangent has the form:

Y —y=y (X —2) or Y=y X+(y—ay)

and any properties of the tan
gent are expressed by a relationshi
between (y — xy’) and y’: ’ o

Dy —ay, y')=0.

thg?oizv(lgg W’;‘t}}: resp(?ct to.(y — xy’), we arrive at an equation of
i ). Che straugl}t lines composing the general solution of

N equation are ev1df3ntly of no interest as regards providing
1 answer to our geometrical problem, the answer being in fact

given by the singular solution of the equation. ’
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Examgple. To find the curve such that the intercept T;T, cut off its tangent
by the coordinate axes is of constant length a (Fig. 11).
The equation of the tangent gives us the projections OT and OT, of the
tangent on the coordinate axes, and this enables us to write the differential
equation of the required curve as:

’

(y — 2y)? , , ay
v +(y—ay)t=a* or Y=y £ = -
vt ( YT+ y*
The general solution is:
y=2xzC% a€ (70)

yTxc

consisting of a family of straight lines, the length of the intercepts of which
on the axes is equal to a. The singular solution is obtained as a result of eliminat-
ing p from:

g =g & —L (1)

Y14 C2

|4
and from the equation
1 2
a =
14 pE—
x 4 1+ =0
< 1+ p? ’
\

'><

%2 which reduces to:
"
We write p = tan g, giving
r=F acos?¢@
Fre. 11 whilst equation (71) for y gives us:
y=T acosd ptan g i asinp = 4 asind¢
We eliminate ¢ by raising the last two equations to the power 2/3 and
adding:

2 2 2
24yt =a’,
i.e. tho required curve is an astroid, which we mentioned in [1, 80]. The
straight lines (70) form the family of tangents to it (Fig. 11).

9. Lagrangian equations. An equation of the form:

y=ap,(y) + ¢=(¥)

is called a Lagrangian equation, ¢,(y’) being assumed different from y’;
if ,(y’) =y’, we get the Clairaut equation just described.

We use the same method of differentiation for (72) as for the
Clairaut equation. We write y’ = p, so that the equation becomes

y =29, (p) + (P) (73)

(72)
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We take the differentials of both sides and get a first order equation
for p:
pdz = ¢, (p) dz + g1 (p) dp + ¢2 (p) dp-

Division by dp gives us the equation:
d ’ ’
[92(p) — 1) g, + i (D) 2 + i (p) =0,

Which_, on the assumption that z is a function of p, is a linear differential
equation. We reduce this to the form (25) by dividing both sides by
[pi{p) — p], and obtain its general solution in the form:

z =1y (p)C + y:(p)- (74)

Substitution of this expression for z in equation (72) gives us an
equation for y of the form:

Y =1v;(p) C + v, (). (75)

Equations (74) and (75) express  and y in terms of an arbitrary
constant C and a variable parameter p, i.e. give the general solution
of the Lagrangian equation in parametric form. On eliminating
parameter p from (74) and (75), we get the ordinary equation for the
general solution.

When dividing the equation by dp, we may have lost the solution
corresponding to dp = 0, i.e. corresponding to constant p, or what
amounts to the same thing, to constant y’. But constant y’ leads
to a first degree polynomial for y, i.e. the missing solutions must
be straight lines, if they exist. We also note that, for constant p = a
(73,) gives a dz = ¢,(a) dz, i.e. the value of the constant a must bé
defined by the equation g,(a) — a = 0.

-We give the geometrical interpretation of this last fact. Sub-
stitution of constant O, for ¥’ in equation (72) gives us the equation
of the isoclines:

Y =z, (C1) + 92 (Cy), (76)

l.e.. the isoclines of a Lagrangian equation are straight lines. The solutions
_Wluc.h are represented by straight lines have to be sought among the
1soclines. For this, we have to establish the condition that the slope
#1(0)) of the isocline is the same as the constant slope C, of the tangent
along the isocline:

¢, (Cy) — C; =0.
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On solving this equation and substituting the value found for C;
in equation (76), we obtain the required solutions, among which
must be included the singular solution in question.

10. The envelope of a family of curves, and singular solutions.
We have already had two examples in which singular solutions were
obtained in addition to the general solution. The general solution in
the example of [7] consisted of the family of circles

@O +y2=a (17)

with centres on OX and of fixed radius a.

The two lines y = +-a, parallel to OX, were singular solutions.
Any given point of these lines is a point of contact with a circle of
family (77) (Fig. 10). The general solution in the example of [8]
consisted of a family of straight lines whose intercepts cut off by
the coordinate axes were equal in length to the given a, whilst the
singular solution was the astroid, such that any given point of it
was a point of contact with one of the lines concerned, i.e. the family
of straight lines was a family of tangents to the astroid.

These examples lead us naturally to the concept of the envelope
of a family of curves. Let the family of curves

1/’(95, Y, C) =0, (78)

be given, where C is an arbitrary constant. The envelope of the family
18 defined as the curve, every point of which is a point of contact with a
curve of the family, i.e. the tangent at any given point of the envelope
is also a tangent to the curve of family (18) that passes through this
pornt.

We derive the rule for finding the envelope. We start by finding
the slope of the tangent to a curve of family (78). We differentiate
equation (78), whilst taking into account that y is a function of z
and C is a constant; this gives us

aw(vgxy, 9 4 Bw(wéyy, 0) _g_z:(),
whence [I,69]:
oy, y,C)
= wmEeo (79)
%y
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We assume that the required equation of the envelope is
E(z,y)=o0. (80)

We can suppose that the left-hand side of this equation, R(z,y),

which is as yet unknown, has the form y(z, y, C), where C, instead

of being a constant, is some unknown function of z and y. For any
given function E(w, y), in fact, we can write the equality

B(z,y) = v(z,9,C),
which defines C for us as a function of z and y. In other words, we
can look for the equation of the envelope in the form (78), except
for C being a required function of # and y instead of being a constant.
We differentiate both sides of (78), and obtain, since C is no longer
constant:

By(x, 4, C) 9,0 ,9,C
Gl dz 4 RO gy HELD go—0.  (81)

The slope dy/dx of the tangent to the envelope must, by hypothesis,
be the same as that of the tangent to the curve of family (78) that
passes through the same point, ie. equation (81) must give us
equation (79) above for dy/dz; but this can only be the case when
the third term on the left-hand side of (81) vanishes, i.e. when
(8y(x, y, C)/0C) dC = 0. The possibility dC = 0 gives us constant C, i.e.
a curve of the family and not the envelope; so that to obtain the
envelope we must put

(x4, 0)
oC

This equation also defines C' as a function of (z, y). Substitution
of the expression obtained for C in terms of # and y in the left-
hand side of (78) gives us the equation (80) of the envelope, i.e.
the equation of the envelope of family (18) can be obtained by eliminating
C from the two equations:

=0.

P, y, O)=0; 2&1I (@ v 9D —o. (82)

As we move along the envelope, we touch different curves of family
(78), each curve being defined by its value of constant C; this makes

1t clear why the equation of the envelope was sought in the form (78),

with C, however, taken as variable.

We now turn to the singular solution of a differential equation.
We let (78) be the family of the general solution of the differential
equation:

Pz, y, y') =0, (83)
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i.e. the coordinates (z, y) and slope ¥’ of the tangent for any given
curve of family (78) satisfy equation (83). At every pointof the envelope
z, y and y’ will coincide with the z, y and y for some curve of
family (78), i.e. the z, ¥ and 3’ of the envelope will also satisfy (83).
In other words, the envelope of the family of the general solution is also
an integral curve of the equation.

If y(z, y, C) = 0 is the general solution of equation (83), elimination
of C from equations (82) leads us to a singular solution in certain
cases. We add the proviso here, ““in certain cases” (and not always),
due to the following considerations. It was assumed in the above
arguments that curves (78) have tangents; therefore, if we eliminate
C from equations (82), it is possible for us to obtain not only the
envelope, but also the set of all the singular points of the curves of
family (78), at which the curves do not possess definite tangents
{1, 76]. Furthermore, it sometimes happens that the envelope itself
enters into the constitution of family (78). We shall not give a rigorous
treatment of the theory of envelopes and singular solutions. The
theory must obviously be closely connected with the existence and
uniqueness theorem, mentioned in [5]. We confine ourselves to
explaining the problem in a few examples.

1. We seek the envelope of the family of circles (77):
(x— Oy +y*=at.
Equations (82) here take the form:
(=0l +yt=0a* —2(@—C)=0.

The second equation gives ¢ = z, and substituting this in the first equation gives
us y? = a?, ie. the set of two straight lines y = +4a, which we obtained pre-
viously.

2. The general solution of Clairaut’s equation y = xy’ + @(y’) is

y =20 + ¢ (C).
The envelope is obtained by eliminating C from the two equations:
y=20+9¢(0); O0==z+ ¢ (0).

These equations coincide with equations (69) of [8], with the trivial replacement
of the letter p by O, i.e. we get the previous rule for finding the singular solution
of Clairaut’s equation.

3. The curve y2 =«2 is the so-called semicubical parabola (Fig. 12). On dis-
placing the curve parallel to OY, we get a family of semicubical parabolas:

W+ 0y =as.
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Each of these curves has a cusp on OY, and there exists a right-hand tangent
at the cusp, parallel to 0X. Equations (82) here take the form:
y+0p=a 2(@y+0)=0.

Elimination of € gives us z = 0, i.e. axis OY. Axis OY is not the envelope
in this case, but the locus of singular points of curves of the family.
4. We consider the family of curves

y=0C(x —0)e,

=)
]
b

Fig. 12 Fic. 13

We have a parabola for ¢ = 0, and the axis OX for C = 0. Equations (82)
become:

Yy=C@—-C% (x— C)(x—30)=0.
The'y secc{nd equation gives 0 =z or C = z/3. Substitution in the first
equation gives us either y = 0 or y = 42%/27. The first curve y = 0 is axis

0X, which !oelongs to the given family of curves; whereas the cubical parabola
¥ = 42327 is the envelope of the family.

5. We take the chords of the circle of unit radius, centre at the origin, that

*. 8re perpendicular to OX and we draw fresh ecircles with the chords as diameters

th.us obtaining a family of circles. If z = C is the point of intersection of a chord,
Wwith 0X, the square of the radius of the corresponding circle is (1 — C?) (Fi

13), 80 that the equation of the family is: ©

‘ (x—O2+y2=1— (.
Difforentiation with respect to U gives us the equation:

~2(@— C)= —20;
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on eliminating € from the last two equations, we get the equation:
a2
iy 2
5ty 1,

i.e. we obtain an ellipse with semi-axes y2 and 1, with the coordinate axes
as axes of symmetry. It is obvious from the figure that this ellipse does not touch

all the circles of the family.

11. Equations quadratic in y’. We consider in more detail, from the point
of view of singular solutions, differential equations that are quadratic in y”:

@ (:l‘, Y, y’) == ylz -+ 2P (.’E, y) y’ + Q (.'E, y) =0, (84)

where P(z, y) and Q(z, y) are single-valued and continuous, and have continuous
derivatives with respect to y, throughout the domain; e.g. they may be poly-
nomials in 2 and y. We obtain on solving with respect to y”:

y =— P y) £t VR, 9) (85)

where we have taken R(z,y) = [Pz, ¥)}* — @(», ¥). In the part of the domain
where R(x,y) > 0, (85) is equivalent to two differential equations, and in
accordance with the existence and uniqueness theorem, two and only two
integral curves will pass through every point of this part of the domain. Dif-
ferential equation (84) will have no singular solutions in this region. In the
region where R(z,y) < 0, equation (85) does not yield a real y*, and there are
no integral curves in this region. Finally, we consider the equation

E(z, y)=0, (86)

which can define one or more curves in the domain. It is only among these
curves that singular solutions of equation (84) can be found. We remark that
(86) can be obtained by eliminating from (84) and the equation:

6® ) ’ ’ .
—(—wﬂ)—=0. ie. o+ Pz y)=0.
oy
The latter equation expresses the fact that (84) has a multiple root with respect

to y’.
1. In the case of the equation

y=way +y? ie. yri+ay —y=0

(86) takes the form «2/4 + y = 0, and the parabola y = — z%[4 is a singular
solution of the Clairaut equation written.
2. In the case of the equation

Y42y +y=0

(86) gives y = «2. This parabola does not satisfy the equation written, so that
the latter has no singular solution whatever.
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12, Isogonal trajectories. An iso j i
_ : . gonal trajectory is defined
family of curves intersecting the curves of the fgmily of e the

‘ z,y,C)=0
at a given angle. v s o) &7
If the given angle is a righ j
: ght angle, the trajectory is called th
orthogona_l trayect_ory. We show that finding an isogonal trajectore
leads to. lnhtegratmg a first order differential equation. Y
On eliminating C' from the equations:

: —0 @y ) iz, y, O

we obtain the differential equation of the given family (87) as in [7]:

¢(£I3, Y, Z/’) =0. (88)

We start by finding the orthogonal trajectory. In this case, th
tangents to the required curves are perpendicular to the tan en,ts te
f,he curves of family (87) at the points of intersection of thegcurve :
Le. the slopes of the tangents to the trajectory are the reci rocals,
;‘[?th re_versed sign, of the slopes of the tangents to the given pfamﬂ;,
] :jr;(;:o;t f(i]ows that, to obta}in the differential equation of the orthogonal
e oo é/,f : ;ﬂrzr/z-ust replace y’ by (— 1 /y’) in the differential equation of

Finding the ortho 1 j
gonal trajectory th ; :
the equation: ] y thus reduces to integration of

(D(x, Y1 _.yLi)ZO’

where y, is the required function of z.
lzvihnow turn to the general problem of isogonal trajectories. Let
ZJhee he constant a‘mgle at which the curves of the trajectory intersect
curves of family (87). Let y, denote, as before, the ordinate of

the required curve; on usi
: ; using the formula f
difference of two angles: o7 the tangent of the

tan ¢ = tan _ ) fany, —tany,
(1/)1 1/)) 1 + tan » ta’rw-l y

wh =y’ i
ere tan y = y’ is the slope of the tangent to a curve of (87) and

tan p = g’ is the sl
can v;rite'y 1 slope of the tangent to the required curve, we

Ity = ne (89)
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where @ is measured from curve (87) to the required curve. On eliminat-
ing y’ from the last equation and equation ( 88), we obtain the
differential equation of the isogonal trajectory, which then has to be
integrated.

We come across orthogonal trajectories when considering plane fluid flow.
‘We assume that the fluid flow takes place in a plane, so that a vector v, the
velocity of motion, is defined at every point (z, ¥) of the plane. If the velocity
vector depends only on the position of the point in the plane, and not on time,
the motion is described as steady or established. We shall confine ourselves to
this type of motion. We further assume that there exists a velocity potential,
i.e. that the projections of vector v(z, y) on the coordinate axoes are the partial
derivatives du(z, y)/0x and du(z, 1)/8y of some function u(z, y). The curves of

the family
u(z, y)=0C (%0)

aro described in this case as equipotential lines.

The lines, the tangents to which have, at every point, the same direction
as the vector v(z, ), are called stream lines and give the trajectories of the mov-
ing particles. We show that the stream lines
form the orthogonal trajectories of the Sfamily
of equipotential lines.

Let ¢ be the angle formed by the velocity
vector v(z, ¥) with axis 0X, where | v | is the
length of this vector. By hypothesis, du(z,y) [0z
and du{r, y)[dy are the projections of v(z, y)
on the axes, i.e.

vd

—a—u—(g;’—y—)—=[v|-cos @ and
Eu_(é_”y’_@ —|v|-sin g,
whence we obtain the expression "for the
slope of the tangent to a stream line as:
ou (z, Y)
Fic. 14 ___ % _
tan g = — @9 91)
ox

The slope of the tangent toan equipotential line (90) isfound by differentiating
this equation with respect to x:

du (2, y)
ou (z, y) ou(z, vy ,__ = — ____ax___
- + 5 y =0, whence ¥ = au(g’ 7’
[}

i.e. we obtain a slope which is the reciprocal, with reversed sign, of slope (91).
Hence it follows that the equipotential lines and the stream lines are orthogonal
to each other.
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; Ifa; fla,n;lly f)lf curvesisa fa,mily of equipotential lines, its orthogonal trajectories
(;rm le :,mlty :-f i‘orrespondmg stream lines, and vice versa.In the case of a

plane electrostatic field, the lines of force re ' j

e famaily of equuipgtontial e present the orthogonal trajectories

Ezample. To find the isogonal trajectories of the family
y = Oz". (92)

On eliminating C from the equations

y=Ca™;, oy =Cma™?

5

wo get the differential equation of family (92):
Y

Y =m-=,
x

On substituting this expression for ¥’ i i
of e veinad ot y’ in (89), we get the differential equation

' m Y
Yome
1 vy ok

+m=

the constant tan ¢ bei i
4 : @ being written as 1/k, and writi i i
This equation reduces to the form: / VrimEsimply y instead of yy

Y= ——— (93)

anclif is therefore a homogeneous equation [3].
m e . \ :
tho reqs n‘91(i (cgur2) is a fa,r:nly of radius vectors passing through the origin, and
¢ i urves must cut these at a constant angle, i ;
logilfnthrmc spirals [I, 83] or circles. gle, L. they are cither
m = —1 and k = 0, the indi
. , problem red j
torios of the retan e, hrmorbolas uces to finding the orthogonal trajec-

Here, 55 zy=0C. (94)
» (93) reduces to the equation with separable variables:

dy «
&y or xdr— ydy=0.

Integration in oi
again gives a famil
°ase to the axes of Symmetrn;':y of rectangular hyperbolas, referred in this

. 2 —y2=0C.
ma; . . oo
Y easily be seen, this family is obtained from the given family (94) by

turning ;
g it through 45° ioi
0 the forry, g about the origin. In general, for k = 0, (93) reduces
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and its general solution is:

myt 4+ 22 =0,

i.e. the orthogonal trajectories of family (92) consist, for m >0, of a family of
similar ellipses, and for m < 0, of a family of similar hyperbolas. The orthogonal
trajectories of the parabolas y = Ox? are illustrated in Fig. 14.

§ 2. Differential equations of higher orders;
systems of equations

13. General principles. An ordinary differential equation of the
nth order has the form:

L4 (x; Y, y,; y”) veeey ?/(")) =0, (1)
or, on solving with respect to y™:

g™ =f@, ¥ Y, Y - YO (2)

Every function y of the independent variable z that satisfies
equation (1) or (2) is called a solution of the equation, whilst the actual
task of finding the solutions of the equation is described as the task
of integrating the equation. We take as an example the linear motion
of a point-mass of mass m under the action of a force F, which depends
on time ¢, on the position of the point and on its velocity. If we take
as axis OX the straight line along which the point moves, the force F
can be considered as a given function of ¢, © and dw/dt. By Newton’s
law, the product of the mass of the particle and its acceleration must
be equal to the force acting. This gives us the differential equation

of motion:
d2r dz
m-—:F(t, x’—dT)' (3)
Integration of this second order equation determines the relationship
between x and {, ie. the motion of the particle under the action
of the given force. In order to obtain a definite solution of the problem,
we must also specify the initial conditions of the motion, i.e. the position
of the particle and its velocity at some initial instant, say at ¢ = O:
dz ,

= (4)

x =, — =z
=0 b dt |i—o o

&
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In.thej case of t‘h(‘E nth order equation (1) or (2), the initial conditions
consist in a specification of the function y and of its derivatives up
to and including the (n — 1)th order for a given value of z = x,:

ylx:xﬂ = Yos y’|x=xo :y(,); ceed y(n.-l)lx—xo = y‘()n—l). (5)
The Yo ¥ - - -» ¥5* 2 here are definitely assigned numbers.

A l}niqueness and existence theorem is valid for the nth order
equation, as for the first order equation, and can be stated as follows:
if fle, 9,9, ..., y V) is a single-valued function of its arguments z'.;
c%:zfzzzuous for all x in the neighbourhood of x, and for all y, y’ .’..
¥ in the neighbourhood of (5), and has continuous first order p’artz'ai
derivatives with respect to y, y’, ..., 4"V, a single definite solution of
equation (2) corresponds to initial conditions (5).

On varying the constants y,, 43, - - ., ¥$" 2 in the initial conditions
we obtain an infinite set of solutions, or more accurately, a famil :
of solutions, depending on 7n arbitrary constants. These’ arbitrar§
constants can appear in the solution, not as initial conditions, but
in the more general form: ,

Y= (P(x, 01, 02,. . ey On). (6)

. Such a solution of equation (2), containing n arbitrary constants,
18 called the genfaml solution of (2). The equation of the general solution
can also be written in implicit form:

w(x, Y, 01: 027- RS Cn) =0. (7)

01.1 assigning definite values to constants C,, C,, ..., Cn, we obtain

particular solutions of the equation. ’
, We ob.ta.in n equations by differentiating equation (8) or (7) (n — 1)
dlin%es with respect to x then substituting = = z, and initial con-
tA)tl(&nts; (SS). It is assumed that these equations are soluble with respect
ya"—l)l’ fz, e, Ch f(?r :‘amy given initial conditions (x4, ¥4, ¥4, - - -»
A t})1 rom a,.certam interval of variation of z,, ¥, ¥, - .., y5" 7.
hood sl'l; obEam th(.?, solutit?n satisfying conditions (5). If the right-
sev(ﬂ.alls :IH(Z. equa%tlon (2.) is a many-valued function, there will be
Evory BOIutilons o eguatlon ( 7? corresponding to initial conditions (5).
oy ol .onbrllotf included in the family of the general solution,
o ama. e from (6) for a.ny values of constants O, is called

gular solution of the equation.

ml'll;l;ebrema,rks I.na-de. in [7] in connection with first order equations
e borne in mind as regards the concepts of general solution
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and singular solutions. These concepts have to be related to the
existence and uniqueness theorem.

If the right-hand side of equation (2) is expanded into a series
arranged in positive integral powers of the differences:

@ =), (Y—Yo) & —Ho) - -,y D —y§),

on the hypothesis that the absolute values of these differences do not
exceed a certain positive number, the solution satisfying initial
conditions (5) can be represented as a series

n

gt B @ —a)+ Loz +... ®

for all z sufficiently near z,. Here, equation (2) itself gives fully defined
values of the coefficients of the series, as in the case of first order
equations [5]. In fact, on substituting = %, and initial conditions
(5) in the equation, yo? can be found. We then differentiate (2) with
respect to x, substitute z = z, and initial conditions (5) and oy =
=y, and thus find y§"*Y, and so on.

Another procedure can be adopted for finding the coefficients of
the series, that of replacing y on both sides of equation (2) by the
power series:

y="9o+ L (@ —a) + B@—wP ..o+

(n—1)
-+ ‘(zg‘_n_—m (x — o) 1 4 ap (2 —20)" + gy (T — Z)" 4L

with undetermined coefficients @, @n4q, - ... We arrange the right-
hand side of the equation obtained in powers of (¥ — %), then suc-
cessively determine the coefficients just mentioned by equating the
terms in like powers of (x — z,) on both sides of our identity [5].

Ezample. We consider the motion of a particle of mass m along a straight
line under the action of an elastic force tending to pull the particle back to its
position of equilibrium and proportional to the displacement of the particle
from this position. We further assume that the motion takes place in a medium
whose resistance is expressed as the sum of two terms: the first directly pro-
portional to the velocity, and the second proportional to the cube of the velo-
city. If we let x denote the displacement of the particle from its equilibrium
position, we get the differential equation:

me’ = —k,x—kyx' — kg3

where k,, k,, k, are positive coefficients of proportionality.
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We take a numerical example:
= —x—0.1x —0.1a? (9)
and we look for the solution satisfying the initial conditions:
Tlmg =Ty =1; 2|y =ai=1, (10)

as a series arranged in powers of . We differentiate equation (9) with respect
to ¢:

"’ =—z -0l —03zx22"
V=" —0.da” —0.3@?a” + 2 2")
$(v) _ — 7 — O.Ix(iv) —0.3 (61" "2 L 2t .'E(iv) + 2273) (11)

2D = — 2V — 0.12(") — 0.3 12022 - 627 22 4 827 27 21V 4. w2 2V)),
- We substitute the initial values (10) in equations (9) and (11), and successively
compute the initial values of the derivatives:
z,=1; z4=1; xg=—12; xf’ = —0.52; wgi") = 0.544;
a() = 0.2160; (') = 3.1453.
On applying Taylor’s formula, we get an approximate expression x; for the
required solution:}

z, =1+t — 0.662 — 0086713 + 0.0227¢4 + 0.0018¢5 - 0.00441,
@f =1 — 1.2t — 0.26¢2 -+ 0.907¢% + 0.0000¢4 4 0.0262¢5,

@] = — 1.2 — 0.52¢ 4- 0.272¢2 + 0,036£3 -+ 0.13114%,

which gives a good degree of accuracy for ¢ near zero.

14. Graphical methods of integrating second order differential equations.
There is a corresponding curve for every solution of a differential equation of
the nth order, and, as in the case of first order equations, we shall call the
curve an integral curve of the equation. In the case of a first order differential
oquation, there was a corresponding tangent field [5].

We now explain the geometrical significance of the second order equation

¥ = (=, ¥, ¥)- (12)

1 It is to be noted that we obtain the series for z; and &}, not by differentiating

the series for z,;, but by applying Taylor’s formula to @, and xj:

” . .
., xg z_é’/ z$v) gi) :L‘(Vl)
si=eft Tt g Ot g 0 gt
. ” s iv) (V) vi
1 =229+ z‘i t+4 wgz' 12+ m‘é‘ B4 wi‘) .
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Let s be the length of arc of the integral curve, and let a be the angle that
the positive direction of the tangent forms with the positive direction of 0X.
We have [I, 70]:

dy dz
~a—m«_tana, —dT—cosa,
and we obtain, on differentiating with respect to x:
dy 1 da 1 da ds 1 da
dx? = costa dr = costa ds dr cosfa  ds °

but da/ds is the curvature of the curve, as we know from [I, 71]
da 1

& TR (19
and the previous equation gives us:
2
Lo Y (14)

R da?

We take R positive here, if a increases with increasing s, and negative if
a decreases with increasing .

We take, say, OX directed to the right, and OY directed upwards (Fig. 15).
With this, if B > 0, the curve rises from right to left with increasing s
(counter-clockwise), and in the opposite direction if R < 0.

By (14), the differential equation (12) can be
- R0 R<O rewritten in the form:

|14 1 \
. = f(z, y, tan a) cosd a. (15)

It is clear from this that a differential equation
of the second order gives the radius of curvature, if
the position of the point and the direction of the

X . tangent at this point are given.
This fact gives rise to the method of approxi-
Fic. 15 mating to the integral curve of a second order
equation by means of a curve with a continuously
varying tangent and composed of the arcs of circles.
This method is analogous to that of approximating to the integral curve of a
first order equation by means of a step-line [5].
We take the initial conditions for the required integral curve as:

Ylxwo = Y03 ¥ lxwo= Y00

We mark off the point M, with coordinates (z,, y,) and draw M T, through
the point with slope y’ == tan a =y, (Fig. 16).

Equation (15) gives us the corresponding B = R,. We draw M ,C, perpendi-
cular to M T, and equal in length to R, then with C, as centre construct a
small arc M, M, of a circle of radius R,

We notice here that the direction of M ,C, is determined by the sign of
R,, by what was said above. If, for instance, B, < 0, movement must be clock-
wise along the arc of the circle from M, to M, (Fig. 16). Let (z,, ¥,) be the co-

i

"order equations:
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ordinates of point M, and tan g, be the slope of the tangent M,T, to the circle
passing through M,. Equation (15) gives the corresponding R = R,. We con-
struct M,C,, equal in length to R,, and perpendicular to M. 1Ty, i.e. lying along
the straight line M,C,, its direction being determined by the sign of R,; then
with C, as centre, we draw a small arc M, M, of radius R,. We proceed from M,
as from M, i.e.find from (15) the corresponding R = R,, draw the line M,C,,
equal in length to R,, etc.

A straight rule is used for the above construction, with a hole for a pencil
at one end. The quantity R is measured off on a graduated scale that runs

r l
Y }’J.\‘Ma
4y 7
Ha ’
Ay
N N.
o T , X
p Ay | %o X1 N2 1Xs S
B 2& Ny
8,
7 %
Fic. 16 Fic. 17

along the rule from this hole. One leg of a small tripod device is located at
th? point corresponding to R, whilst the other two legs are on the paper. On
shifting the tripod along the scale at points M,, M, etc. in accordance with
the variation of R, we do not alter the direction of the tangent at these points;
hence we obtain the required curve.

We now give another method of graphical integration of equation (12),
Providing an approximation to the integral curve in the form of & step line.
The. method is a generalization of that illustrated in Fig. 9. In addition to g,
We introduce the unknown function z = y’. We now obtain, in place of the single
Second order equation (12), a system of two first order equations with two
unknown functions y and z:

dy dz

dz =Z; 'd_x":f(x’y,z)' (16)

We apply the method to be explained in the general case of any two first

d
Exy—=g(w,y, 2); %Z— = f@, 9, 2)- (17)

We take & as abscissa, and ¥ and z as ordinates in the same coordinate
8tem, so that there will be two integral curves corresponding to every solu-

) pon. of system (17).
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We mark off the unit length OP along the negative direction of the abscissa
(Fig. 17). The values of f(z, y, z) and g(z, y, #) are marked off on the axis 0%,
using the scale in which OP is unity; a different scale to that used for the
functions may be used for x, ¥ and z.

Let the solution of system (17) be required which satisfies the initial condi-
tions:

Ylxaxo = Yo3

2| gmxo = %o

We draw a series of straight lines, parallel to the y axis:

=T
=12
T =Ty}

We mark off points M, and N, with coordinates (z,, ¥.) and (x,, 2,)- We
take 04, and OB, along the y axis, equal to g(, Yo, Zo) and f(Z, Yo» %o) TEBPEC-
tively. The lines PA, and PB, will have slopes g(%s, Yo %) and f(@o, Yo» Zo)s
and will therefore give the directions of the tangents to the required integral
curves at the initial points M, and N,.

We now draw from these latter points MM, and N,N,, parallel to PA,
and PB,, to their intersections with the line « = 2;. Let (@, y,) and (x,, z,)
be the coordinates of the points of intersection M, and N;. We now mark off
04, and OB, on the ordinate axis, equal in length to g(z, ¥1, z1) and f(@y, Y1, 21)-

From points M, and N; we draw M, M, and N,N,, parallel to P4, and PB,,
to their intersections with @ = x, and so on. We thus obtain two step lines
MM, M, ... and N,N,N, ..., representing approximations to the required
integral curves.

The construction is simplified in the case of system (16), since g(z,y, z)
coincides with the ordinate z of the second line N N,N, ... The second line
here gives an approximate graphical representation of the first derivative y’.

The construction is greatly simplified if the differential equation has the
form:

Yy = fl (=) + fz ) + fa (yl)»

which is often encountered in the investigation of the vibrations of material
systems with one degree of freedom.
The equation written is equivalent to the system:
dy

L =z,

dx
dz
"a;" = .f1 (x) + fz (:L‘) + f3 (z)'

If the graphs of the functions f,, f, and f; are drawn with the same ordinate
scale, we can determine f(z, ¥, z) by simple addition of the ordinates of these
three curves for selected corresponding values of the abscissae @, ¥, and z.

The method described can also be used for systems of n equations of the first
order with n unknown functions. We remark that it is sometimes more con-

'

9%, using identity (19):
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venient to mark off the unit vector which we denoted by OP, as also the values
'of the functions g(z, y, 2) and f(z, y, 2), from some other point 0, of axis OY
u}stead of from the origin O. This is done so as to avoid the lines P4,, PB,, ... ’
giving the directions of the step line, intersecting with the step line Oi’tselfz

Figure 18 illustrates the construction of the solution of equation (9), satisfying
the initial conditions (10). )

M,
M M5 Mg M7M8 9’110

%
Syt

%,
— 4

Fig. 18

. 15. The equation 3™ = f(z) The equation:

y™ = f(x) (18)

f; 2 .direct generalization of the equation y’ = f(z). We start by
‘eriving the formula for the general solution of equation (18). Let
%(z) be any solution of (18), i.e.:

¥ (2) = f(2). (19)
- We introduce a new required function z in place of y, given by:

Y=y (2) + =
Substitution in (18) gives us the equation for z:

Y + 2 = f(a),

2N =0,

(20)
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Since the nth derivative of 2 must vanish, function z itself is a
polynomial of degree (n — 1) with arbitrary constant coefficients:
2=0,+Cx+...+ C 2"?,

and (20) gives the general integral of equation (18):
y=y,@) +C +Cex+...4+C 2",
i.e. the general solution of equation (18) is the sum of any particular

solution of the equation and a polynomial of degree (n — 1) with arbitrary

coefficients.
It remains for us to find a particular solution of equation (18).
We shall seek the solution satisfying the zero initial conditions:

Y lxmxo =0
Y |xmxe =03 (21)
coytY =0,

On integrating both sides of equation (18) from 2, to the variable
limit z, we obtain:

Yo — g = (1 () da,

where y{"~? is the value of y{*™* for x = x,.
We have y{"™ = 0 by the last of conditions (21), so that:

y = (f(z)dz.
Zo
We obtain y{"~2 by again integrating the right-hand side of this
equation with respect to = between the limits x, and «, and by proceed-
ing in this way, we finally obtain the required function after the nth
integration. We usually write this iterated integration as:

z z 4 x
y=5dx5dx... dejf(x)dx. (22)
The n times repeated quadrature can be replaced by a single quadra-
ture, as we shall now show.

We expand y(z) by Taylor’s formula, with the integral form of
remainder term [I, 126]:

Y@ =yo+ (@ —20) Lt @) o+ +

+ @ —ar B+ e gty 0 dr,

To
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where ¥, Y6, Yos -« - -» yf,"‘]) are the values of y and its derivatives
for © = x,, whilst ¢ simply denotes the variable of integration. By
initial conditions (21):

Yo=Y=Y=... =y =0,
whilst ¢™() = f(t) by differential equation (18); hence Taylor’s
formula above gives:

Y (@) = gy [ (o — Or () e (23)

To

Formula (23) gives the solution of equation (18) for the zero initial
condsitions (21), or, what comes to the same thing, gives an ewpression
for the repeated integral (22) in the form of a single integral.

We get the general solution of equation (18) by adding a polynomial
of degree (n — 1) with arbitrary coefficients to solution (23). We notice
that o appears as the upper limit of integration, as well as under
the integral sign, on the right-hand side of (23). Integration is carried
out with respect to ¢,  being meantime considered constant. Formula
(28) is obviously also valid for n = 1, provided we take 0! = 1.

16. Bending of a beam. We consider an elastic, prismatic beam, bending
under the influence of external forces that may be both concentrated anp
continuously distributed (weight, loading).

We take OX along the neutral axis of the beam in its undeformed state, and
OY vertically downwards (Fig. 19). We use the convention that forces acting
on the beam are positive if directed down-
wards. We isolate section N of the beam ]
with abscissa x.

'Let y denote the displacement of the
Pomnt on the neutral axis, and R the radius
of curvature of the deformed axis. It is
Bht).Wn in the theory of strength of ma-
fel‘la.ls that, with certain assumption regard-
Ing the character of the deformation and
the position of the beam relative to axes OX,
0y, 'the equation of equilibrium is to be )
obtained as follows: we neglect the part of Fre. 19
the beam either to the loft or to the right of N
¥, and calculate the bending moment M(x),

:}“l:aelxzo thle sum of t.he moments about the neutral line of section N of all
 posits erna, 'forces acting on the n_eglected part, these moments being reckoned
5 ive if, in the case of neglecting the left-hand part, they have a counter-

o

) ; . . )
& lockwise rotation, or in the case of neglecting the right-hand part, they have

4
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a clockwise rotation. The differential equation of the bent axis of the beam

now reads:
EI

=M@, (24)

where E is the modulus of elasticity, and I the moment of inertia of the cross-
section considered about the neutral line contained in it.

Taking the deformations as in general small, and the axis of the beam on
deformation as differing only slightly from axis OX, we can neglect the square
of the small quantity ¥’ in the expression for R [I, 71]:

_Q+yyh 1
B=SH0

which gives, on substituting from equation (24):

M@

We now suppose that the only concentrated forces are at the ends of the
beam, being equal respectively to P, and P, (in the case of Fig. 19, P is nega-
tive); in addition to these, there are bending couples at the ends, the moments
of which will be denoted by M, and M,. The distributed loading per unit length
of the beam is denoted by f(x).

We find the sum of the moments of the external forces acting on the part
NL of the beam (Fig. 19). The loading from any element df with abscissa &
is f(£) d&, and its moment about N is

so that the total moment from the full loading of this part is:

{

XS (& — @) f(§) d&.

On adding the moment of the force P, equal to ({ — x) P, and the couple
of moment M, we get:

!
M(x):of (E—2)f(§)dE+ (I — o) Pr+ M. (26)

If we calculated with the above sign convention the sum of the moments
of all the external forces acting on the part ON of the beam, we should get:

X
M@)=§(@—§/&d+aP,+ M, @7

It is easily verified directly that both these expressions are equal. In fact,
the equation

! x
S<5—x>f<s)ds+<1—w>Pz+Afz=OS<x—5>f<s)ds+xPo+Mo
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reduces to the following:

{

{
w[di f(§) At + P, + 1)l:l — [O,\' E(8) AE + 10— M, + M,j -0,

which is in turn an immediate consequence of the equations:
l
fr&as+ P+ P=0, (28)
0

{
 E1(§)AE+ 1P + M — M, =0. (29)
0

The first of these expresses the vanishing of the sum of all the external forces,
whilst the second equates to zero the sum of the moments about the point
O of all the external forces acting on the beam, i.e. they simply express the
conditions of equilibrium.

On recalling the expression in [15] for an iterated integral in the form of g
simple integral, we can write, by (27):

}p
X X x
M(z) = OY dxoﬁ f(z)dx + 2P, + M,, (30) _O , X

whence N \’[.

X ['

aM
~d% =8 (@) = ff B dE+ P, (31 1P
0 |14
dzmM
e dxz(ﬂ = f(x). (32) Fre. 20

The quantity S(z), equal to the sum of all the external forces acting to the
left of section N , is called the shear at section N. Equation (31) shows that the
shear is equal to the derivative of the bending moment.

Eq.uation (32) has the same form as (25), if we replace in the latter the unknown
functxon y by M(x) and the right-hand side M (x)/EI by f(z). This substitution
18 of great importance in graphical statics.

Ezamples. 1. A beam is constrained at the end O and subjected to a con-
tentrated vertical force P at the end L (Fig. 20); the weight of the beam can
neglected. We have in this case:
f(x) =0; Pp=P; M;=0; M(x)y=(l—2z) P,

and the equation of equilibrium (25) becomes:

v P
Y =‘Ef(l“x)-



52 ORDINARY DIFFERENTIAL EQUATIONS [16

The sag must be zero at the constrained end z = 0, and the tangent to
the bending axis must coincide with 0X, i.e. we have the initial conditions:

yIX-o =0 and ¥y Ix-l) =0,

so that we find [15]:

X

Y= [(x—f)%(l—f)df:E%—l—(lxz—f:ga—).

0
The sag at the end L of the beam is given by:

Pp3
b=y |xe1=557"

The supporting reaction will operate only at end 0. Noting that continuous
loading is absent here and that M, = 0, we have from equations (28) and
(29): R, = P, = —P (reaction force); M, = P, (reac-
tion couple).

2. We find the curve of bending of a girder, rest-
ing on two supports A and B (Fig. 21) and subjected
to a head of water whose level is opposite the upper
support (dam). The forces acting on the girder here
amount to (1) the continuously distributed head of water,
and (2) the reactions at the supports.

Let b be the width of the girder and g be the weight
per unit volume of water. If we take & strip of the girder
of breadth dz at a depth z below the level of the water,
the head of water at the strip is the weight of a column
of water with its base equal to the base-area of the strip and its height equal
to the depth of submersion of the strip, i.e.

p-b.de-z=rkadx (k= gb).
Thus we have in this case: f(x) = —kx.
The problem therefore amounts to investigating the bending of a supported
beam under the action of continuously distributed loading flx) = —k=.

We start by calculating P, and P,, the reactions of the supports. The total
loading is

{
k2
P jk§d§=-—2—.
0

The reactions at the supports O and L due to the elementary loading Ledé
are, in accordance with the usual law of levers:

§

.kf‘_lltﬁ d¢ and ?ds.
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Hence obviously:

We have further, by (26):

{
M@=~ [ —a)ksds+ (@ —a) P —
0

4
:‘_kI(E—x)5d5+—§-P(l—x)=—§(xa~lzx)_

X

Differential equation (25) of bending now becomes:

—k
Y =-———6E1 (xa — lzx) 3 (33)
with the obvious conditions:

Ylxmo =03  Ylrmy=0. (34)

The general solution is:

Constants C; and C, are found from conditions (34):

7

C,=0; C -

1 14,
whence finally:
—~k
Y = ggopr (3%° — 1002 a3 + Tit).

To'find the position and value of maximum deflection we put z = I, and
re-write the above expression for y as: ,

— k5
The derivative of the polynomial in brackets:

1544 — 302 4- 7

,hn.s only one zero in the interval (0, 1):

2
t, = 1-— ——~ Qe
0 l/ 2V 5 0.519...,
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Maximum deflection thus occurs towards the end L and not at the centre,
its value being:

— k5 — ki —2.348 PI3

5
_ - 5 _ 102 B 9348 = SRS
o= Yoo = go5r (38 — 108 + o) ~ ggopr 2348 18051

17. Lowering the order of a differential equation. We notice a
number of particular cases in which the order of an equation can be

lowered.
1. Let the function y and a certain number of consecutive derivatives

of y: ¢,y ..., y* P, be excluded from the equation, which has

the form:
D(z, y®, y* 0, .., y™M) = 0.

We introduce the new variable = = y®, thus lowering the order
of the equation by k:
D(x,2,7,...,2070) = 0.
On finding the general solution of the last equation:
z=@(z,0,,0C,,...,Ch_p),
we can find y from the equation:
Y =g, C1, Oy, - -, O,

which we discussed in [15].
2. If the equation does not contain the independent variable z,

i.e. has the form:
Dy.9,y"...,y™) =0,
we take y as independent variable and introduce the new function
p=y.
If we take p as a function of y, and dependent on z via y, and use
the rule for differentiation of a function of a function, we get the

following expressions for the derivatives of y with respect to a:

»__dp __ dp
y_dx—_dyp’

y= o (5 p) = () r = 22t () P

and it is clear from these that the order of the equation is (n — 1)
in the new variables.
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If the transformed equation is integrated:

pP= (Y, 01; 02, ey On——l):
the general solution of the given equation can be obtained by a quad-

rature:

dy =pdx = ¢y, C,,C,,...,C, ;) dz,

y ¥ n—

whence:

Yy —
f 7@ o GGy =21 O
One of the arbitrary constants, C,, appears as an addition to x,
which is equivalent to the fact that any integral curve can be displaced
parallel to OX.

3. If the left-hand side of the equation:

Dz, y,y,...,yY") =0

is a homogeneous function {I, 154] of arguments y, ¥, ..., y™, the
introduction of a new function u(x) in place of y, given by the formula
y =",

results in an equation of order (n — 1) for u. This follows from the
obvious formulae:

y = P y = oSt (v + u?);. ..
and from the fact that, after substituting in the left-hand side of the
equation, a certain power of the exponential function written above
can be taken outside (by the condition of homogeneity) and can then
be cancelled out. The arbitrary constant of the integration in the
Power of e is an arbitrary factor of y.

2’

Examples. 1. An equation of the form:

¥y =1y (35)

belongs to case 2. It can also be integrated directly. We multiply both side
by 2y’ dz = 2dy:

2y y" dx = 2f(y) dy.

The left-hand side is obviously the differential of y’2, and integration gives
us:

y
v? = [2 @ dy+C =1,) + 0y wheneo S~V G TCs ()
Yo
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We separate the variables and integrate:

y
dy

C= I pp————1
o J Vi@ + O

(37

If the initial conditions are:

Ylmxo="Yo  Y lxexe ="0>
we obtain, on substituting z = z,, ¥ = y,, ¥’ = ¥, in (36) and (37):
01=y62; sz'.xo’

and the required solution becomes:

y
& — g = j - dy )
Yo Vy& 2% (y) dy + y2

Let a particle move along the « axis under the action of a force F(x) which
depends only on the position of the point. The differential equation of motion
is [13]:

oS
de?

Let z,, v, be the initial abscissa and initial velocity of the particle at ¢ = 0:

= F (z).

t=0

. de
= xo,

z _
t=0 de

0*

If we multiply both sides of the equation by (dz/d?) d¢ and integrate, we
got:

x x

1 (dey 1 1 (de)? 1

?m(—d—:ﬂ) ~?mv%=jF(x)dx or —2—m(—a—t-) —JAF(m)dx=—2—mvg (38)
Xo Xo

The first term on the left-hand side, m(dz/d¢)?/2, consists of the kinetic

Xo
moving particle; and it follows from (38) that the sum of the kinetic and potential
energies remains constant throughout the motion. We obtain the relationship
between z and ¢ by solving (38) with respect to d¢ and integrating.

2. If the bending of a beam is too large to allow for the second derivative
y” being taken instead of the curvature [16], we have to teke the accurate
equation (24) instead of the approximate equation (25). Our problem now
amounts to the following: tofind the curve whose curvature is a given function
of the abscissa,

x
energy, and the second term| — S F (2) dx] of the potential energy of the

=@ (39)
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This is a second order differential equation:

¥
[EETE

On writing p = y’, we get a first order differential equation with variables
separable:

dp

T+ oy — 7%

and integration gives us:
x
= [r@ata,

+p it

whence
X
ay Jow@dz 0,
P=7g7= = y(@), 40)

X
Vl—[xf p(z) dz 40, ]2

and finally:
x
y={px)dz 40,
Xo

For the case when the beam is supported rigidly at the end x = 0 and is
subjected to concentrated loading at the other end z = I, we have [16]:
—z)P

M(z)=(—2)P; ¢) = ¢ o7 = 2kl —2) (k:..P_)_

2ET
The equation becomes
¥

(I+y™)%a
with the initial conditions:

= 2k(l — ),

Ylxmo =0} Ylxae=0.

On setting x, = 0 in (40), we must also set C; = 0 by the second initial
condition, so that we now have:

x
2kl — z) dx
dy 0j (t~a) 22— (I — )

= =k
dx x 1 —kE[E —(l— 222
Vl—[f%(z_x)dx]z V- k= —op]
0
_ z(2l — x)
VI —k2a? (2 — )%
We find y by integrating again and using the condition y |,_, == 0:

(41)

x(2] — x)

. da.
¢ VI— ka2 (2l — a2

’y:
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The integral written is not expressible in terms of elementary functions.
The curve corresponding to equation (41) is called an elastic ¢urve.
3. We take the equation:

gy = (y — 2y,
both sides of which are homogeneous functions of ¥, y’, ¥”. On substituting
y = fudx

we get:
’ a? (W + ut) = (1 — au),

which gives us the linear equation for u:

2 1
ryLu— =0
u-{-xu )

Integration of this latter gives:
u=a2(C,+a)=C 272+ 2L
On substituting for u in the expression for y, we get:
y = e—Cix14 logx+C
or

y = Cp2eCix™)
where we have written O, = eC and replaced (—C,) by C,.
18. Systems of ordinary differential equations, A system or n first

order equations with » unknown functions has the form, on solving
with respect to the derivatives:

d

dz:/z;l = fl(x,yl,yz‘- . ‘:yn)’

d
Ti!a/c'i = fo (%, Y1 Y2 - - Yn)s (42)
dyn

—(%—:fn(x:yl’y%" "y”)'

An existence and uniqueness theorem is valid as in the case of a single
equation: if

fi(xvypyza- '-’yn) (7’: Lz,.. ‘777’)
are single-valued functions of their arguments, continuous for all' x
near x, and all y; near y®, and with continuous first order p'artzal
derivatives with respect to y;, there exists one and only one solution of

system (42),
yi = w; (x)»
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satisfying the initial conditions:

Y1 lx=xo = I’/ﬁo); Yo ’X=Xo = y(z"); ceel Yn ]xﬂx‘) = yﬁ,"). (43)

We can vary the y{® in the initial conditions, so that the general
solution of system (42) contains n arbitrary constants. Instead of
appearing in the solution as initial values ¥, the arbitrary constants
can also appear in the general form:

yi:wi(x’OhOZ:-"’On) (i::l, 2;---,”). (44)

We obtain particular solutions of system (42) on assigning definite
numerical values to the arbitrary constants C;, C,, ..., C,. To isolate
the solution satisfying conditions (43) from this family, we have to
determine the arbitrary constants from the equations

y$0) = wi (xo’ Cl’ 02" ¢ On) (7’ = 1) 2) MRS ] n) (441)

and substitute the values obtained in (44).

On solving equations (44) with respect to the arbitrary constants,
we obtain formulae which give the general solution of the system in
the form:

(pi(x’yl’y%""yn)zai (1::1’2""’”')’ (45)

with the essential proviso that these equations are soluble with
respect to yy, ¥y, - .., Yn- Any equation of set (45) is called an integral
of system (42), and 7 such integrals have to be found to make up
the general solution of the system; thus it follows that equations (45)
must be soluble with respect to y,, 4,, - . ., yn.
We can re-write system (42) as a series of proportions :
_ dy, _ dy,
dz = hE Y Ye. -y fo (%Y1 Yoo - o, Yn)
_ dyn
(@ Yy g SYn)
On multiplying all the denominators by the same factor, we get
a function of variables z, Y1 Yo - - -, Yn instead of unity in the denomi-
nator of the first fraction. If we denote the variables as R

Ln, Tn4y for the sake of symmetry, the system of differential equations
(42) can be written in the form

(46)

_.dxl — ﬂi — _ dz, . dxnn (47)
28 XZ—“'“X”_XIH-I’

where X, X,, ..., X,, X,,, are given functions of variables z,,
Ty, .+ ., Zny Tnyy. The symmetry of the new form (47) of system (42)



60 ORDINARY DIFFERENTIAL EQUATIONS [18

is convenient for later discussions. In particular, which of the (n - 1)
variables @y, €y - - -, Tnpq 18 t0 be taken as independent variable is no
longer fixed with (47). The integrals (45) of the system become in
the new notation:

@i (21 Ty Tnp) =Ci(0=1,2, ..o n). (48)

When the number of the arbitrary constants that appear in the
solution (44) is determined, there must be no question of lowering
this number. For instance, the three arbitrary constants in the
formulae

yy = (Cy + Oz + Cg; ¥ = 0s7% ys =22+ Cyx + C, 4 Cp

can be reduced to two by putting C; + C; = C. The criterion for the
impossibility of such reduction and for equations (44) giving the
general solution of the system, consists in our being able to satisfy
any initial conditions by suitable choice of arbitrary constants,
i.e. in that system (44;) is soluble with respect to Cy, 0, .., Cn
for any choice of the initial values y{” of the required functions. We
assume here that the right-hand sides of equations (42) satisfy the
conditions mentioned above.

We now turn to a more detailed consideration of the integrals of
the system. Suppose that we have k integrals of system (47):

(pi(a'.l’ xz, “ ey xn+1)=0i(i=1, 2, « ey k). (49)

The functions @iy, Ty -« +» Tnt1) themselves, and not the equations
(49), are sometimes referred to as integrals of the system, ie. a
function @(xy, Tqy - - -» Tnyq) 18 called an integral of the system if it becomes
a constant on substituting in it any solution of the system. Of course
it is assumed here that g(z;, @y - - -» Tn1) is not itself a constant.
Since we can have what initial conditions we please for the solution,
the values of this constant can be taken arbitrarily. If we make up
an arbitrary function F(py, @5 - - @) of the left-hand sides of
equations (49), substitution of any solution of the system will make
all the @;, and therefore the new function, constant, i.e. in addition
to integrals (49) we have the integral

F((plv Pas « - ?)k):O’ (50)

where F is an arbitrary function of its arguments. In other words:
an arbitrary function of any integrals of the system is also an integral
of the system. Equation (50) is not a new integral, being a consequence
of integrals (49).
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Suppose we have n integrals (48) of system (47). They are said to

be independent, if equations (48) can be solved with respect to any n

of the vari
iables 2, @,, ..., Zn4;. Such a solution gives us 7 functions

gf a single ‘independent variable, ie. formulae similar to (44), th
fgiﬁltiase) b'emg ?0(11V6d with respect to the arbitrary constants ir; thz
» Le. nindependent integrals (48) of the
' system are equi
:oi(j)tjohe fgen:}x;al solution of the system. It can be shown thatq’lllizaclrgit
ion for the integrals (48) to be independ i i .
. i t is equivalent
being no one integral which i quence ¥ e s
bein 18 a consequence of the rest i
indicated above, or that there exi hand
' , exists between the left- i
equations (48) no relationship of the form eiirhand sides of

D(py, P oony @) =0,

] . 1 . . ]
W h-lc 18 an 1den lb & W1 Iespec 0 x] ’ xzr LR ] xn-H .
W © harVe glVeTl no test in t/he &bove by WhICh we rﬂlgh

(48) are independent. Take the case n = 2: ¢Judgo whothor intograla

P1 (@ Ty 05) =05 @y (2, 2, 2y) =0C,. (61)

£ N .
If we recall the implicit function theorem of {I, 159], we can say that
> ) at a

Sufficient conditiorl fOr e -0 o] l)e S()llll)le with re
quartl ns (651 t i
. ( ) Spect to xz a,nd

Ay 3o (grs ) =201 072 Oy Bp,
Or, Oux, Ox, 0z,
should differ from zero. Similar statements ap

Assuming that g, st 7. ply as regards w,, , and x,, x,.

oo Do oo ) nec:;;:r;h;ilrdﬁrs; .olrder derivatives are continuous, it
L ; sufficient conditi i
of integrals (51) is that at least one of the expressionls ion for the independence

A
xp x3 (P> Pa)s Axy x (P P2y 4., x2 (P1r Pa)

ShOllld not be identicall i
- zero. We discuss in Volume IT e que ion o

y (5] I th u Q f the
mdependence of a system of functions with any number of variabl:zl '

19. Examples. 1. We take the system:

do _dy  d=
x2 yz = (g (62)
On cancelling out 1/z in the equation
= dy
x2 yz

we obtain i i
In an equation with separable variables, integration of which gives:

logx:logy—C’,i.e.logi=C
x ?
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which is equiva.lent to
_9 =
Cl'

We take as the second equation of the system

de dz

xz — (4P
and use the solution obtained to substitute in it y = C, #. We have on cancel-
ling out 1/:

d dz

P t(T_?*OT);, i.e. (1+0g)$d$+2d2=0.
1

Integration gives:

(1402 a2 4 22=C,
or, on substituting 0, = y/x:
at -y -+ 22=0C,.

which is the second solution of the system.
The two solutions of the system are therefore:

L—cs a2ty +22=0, (53)
2. The system of differential equations of motion of a material particle of
mass m under the action of a given force has the form:
2 2 2
d2x . dzy d2z (54)

3 =Y Mg =4

=3 H

where X, Y, Z, the projections of the force on the coordinate axes, are dependent
on time, the position of the particle, and its velocity, i.e. on the variables
t,z, y, 2 2,y 2.
On teking the derivatives x’,y’, 2” of z,y, z with respect to? as the unknowns,
system (54) leads to the system of six first order equations:
da dy ,. dz , dx dy - dz -7,

Tkt i Tt S et N L TP S Tt T

The general solution of this system contains six arbitrary constants, the
determination of which requires the position of the particle and its velocity
to be specified at the initial instant.

The following three equations follow from equations (54):

2. 2
m( d?z —=z dy):yZ—zY

Y e de
dzx dzz
m(z——at—z——thz—) =2X —xZ

d2y dze
m(x Tt —y dtz)wa-yX,
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which can obviously be written in the form:

d dz dy
m(y —z———dt)zyZ—zY

dt dt

d dx dz

d dy da

Em(x a Y dt):xY_yX'

Let the force be centralized, i.e. always pass through some fixed point,
called the centre, which we take as origin. Since the projections of a vector
are proportional to its direction cosines, and the vector in the present case
passes through the origin and the point (x, ¥, z), we have

X Y zZ

x y z ’

the right-hand sides of equations (55) now vanish, and we have the three integrals
of system (54):

dz dy y . dz dz
m(y En _z—dt )wCl, m(z e _x——dt ):02;
56
m (x Gy 9z \_g 0
a “ Y@ )T

’Ijhe)f express the fact, familiar in mechanics, that the areal velocity of the
projections of the moving particle on the coordinate planes is constant.
It follows from equations (56) that

Cie+Coy+0C2=0,

whence it is evident that the trajectory is a plane curve. The plane of the
trajectory is obviously determined by the centre of the force and by the velocity
vector at the initial instant.

Now let X, Y, Z be partial derivatives of some function U, depending on
2, y,2. We call U the potential of the force, whilst (— U) is the potential energy
of the particle:

oU oU oU

X = ——; _ — = —
s YTy ITg

If we multiply the equations

d?z U | dzy  oU | diz _ 9U

Tar T e ) MTae T oy °’ "Ta3E T o
by dw/dt, dy/dt, dz/d¢ and add, we get:

(dx dz  dy dy | de dzz) au
)T @

A Tads A " ode At  Tde

or

a i) (G ]
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whence we obtain the integral

T—U=0, (57)

m [( dr\? dy 2 dz 2 1 .
r=5 (&) + (@) + (&)
is the kinetic energy of the particle.
Equation (57) expresses the fact that the sum of the kinetic energy T' and
the potential energy (—U) is constant throughout the time of the motion.
3. We consider a system of n particles, inter-related in such a way that the

coordinates of any given particle are defined as functions of the independent
parameters ¢,, gs, . .-, gy, and of time ¢:

where

T= @ (Qp Qo+ 1) Yi=Vi (@ 0o+l 2= (qu - Qs t)
(i=12,..., ). (68)

Let the system be acted on by forces of potential U, depending only on the
position of the particles; then the projections X;, Y, Z;, of the forces acting
on the sth particle on the coordinate axes, are the partial derivatives of U
with respect to x;, ¥;, z;. Let the masses of the particles be my, m,, ... my.
By using equations (58), we can write the kinetic energy:

n
— 3 (b=t (ﬁ@)z (_d_zx_)]
1’",12[(&)‘r a ) TUa) |
and the function U, in terms of parameters q,, gy, - .., ¢y, the motion of the

system being then defined, as is well known from mechanics, by the following
Lagrangian equations:

d (er orT aU
a (o) o =0y bR &)
The function T is clearly a second degree polynomial in the derivatives
, y polyn
4, Qy» - - +» 9k Of the parameters with respect to time, and (59) consists of &

second order equations, which is equivalent to 2k first order equations; inte-
gration of equations (59) gives us expressions for the g, as functions of ¢ and
of 2k arbitrary constants.

Let us suppose that equations (58) do not contain ¢. Then ¢ will also be absent

from T and U. We multiply equations (59) by q'l, q;, ..., gy, respectively and
add:
k k
d ( orT ) or dUu
s —- - § = —— . 60)
sé'l o d: 9gs sé'l s 0Og; dt (

We notice the obvious equality:

k k k
d (8T aT d T
N g =] — = e $
At @ (645) A% oy W 2% o
T ko, oT

k
- sé'l gs '_ag' - s=le —aqs .
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In the present case, T’ is a homogeneous polynomial in ¢; and

k
orT
s A = 2T7
sé'l qs 3{1s

by Euler’s theorem regarding homogeneous functions [I, 154]. Hence

& ,i(aT)_z",,aT_2dT_dT_dT
=@ Uagg s=193 dgs  dt &t dt
and (60) gives us:
ar _ du
de — dt’

whence the integral of (59) is obtained (total energy integral):
T—-U=0C.

4. Knowledge of the integral of the differential equations of motion of a
gystem sometimes enables us to solve the problem of the stability of small
oscillations of the system about the position of equilibrium. We state the
problem mathematically whilst simplifying the discussion by confining ourselves
to the case of three unknowns z, y, z, which satisfy the system of differential
equations:}

da dy dz
d—t-—X, —Ht—=Y, ———=Z, (61)

where X, Y, Z are known functions of z, ¥, 2, and ¢, vanishing for
x=y=12=0. (62)

With this, system (61) has the obvious solution (62), which corresponds to
the position of equilibrium. The position of equilibrium [or simply solution
(62)] is said to be stable if, for any given positive &, there exists an 7 such that,
for any solution of system (61) satisfying the initial conditions:

Tlmg = Tg; Yt =Yy} 2tmy =2y
we have
le], ly}, and || <, (63)

Provided only that
el 1yl and jzy| <n. (64)
Lot system (61) have an integral
(P(x, Y 2) = 07 (65)

not containing ¢, and such that the function @(z, ¥y, z) has a maximum or a
minimum for x =y = z = 0. We show that, with this, the position of equi-

P oeee—

T There are six unknowns in the case of the motion of a single material

© particle.
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librium is stable. By changing the sign of ¢ if necessary, we can assume that it
has a minimum; and by adding a constant to ¢, we can assume that the minimum
is zero.

Function ¢ now vanishes at the point = y = 2z = 0 and is positive at all
points (x, ¥, z) near to, but not at, (0,0, 0). We take a cube §, with centre
at the origin and with a side of length 2&. The continuous function ¢ is positive
at the surface of the cube and therefore attains a least positive value m, so
that over all the surface

p>m>0. (66)

We now take a concentric cube J,, about the origin, with length of side
27n, such that the inequality is valid within the cube

p<m, (67)

which is possible since ¢(0, 0, 0) = 0. Let the point (x, y, 2) be situated inside
cube §, at the initial instant, i.e. condition (64) is fulfilled. Inequality (67)
will be valid not only at the initial instant, but throughout the time of the
motion. By (65), in fact, ¢ preserves the constant value C during the motion.
But given this fact, point (=, y, z) cannot cross the boundary of cube ¢, during
the motion, since inequality (66) must apply at the boundary, which contra-
dicts (67); condition (63) must thus be satisfied for all £ > 0, which is what
we required to prove.

The unknowns 2, y, 2z can be any geometrical or mechanical values, and
we only considered them as the coordinates of a point for the sake of clarity
of proof. Suppose, for instance, that T and U in equations (59) do not contain
time ¢, so that the total energy integral is valid. Let the equations apply for
=0 (=1,2,...,k):

U oU _ U 0
0, 9, T g
Equations (59) now have the evident solution:
qs = qs =0, (68)

to which the position of equilibrium of the system corresponds. If it also happens
that the potential energy (—U) is a minimum for the ¢; = 0, we can assert
that (T — U) is also a minimum for values (68), since 7', which cannot be
negative, nOw vanishes, i.e. is also a minimum. Hence we see that the position
of equilibrium corresponding to minimum potential energy is stable with respect
to the ¢, and ¢; (Lagrange—Dirichlet theorem).

20, Systems of equations and equations of higher orders. We con-
sider the relationship between a system of first order differential
equations and a single higher order equation.If we have, for example,
one differential equation of the third order:

C=1yY. Y,

4

y
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we can replace it on writing y = y,, ¥" = ¥4,, ¥" = y;, by a system
of three equations of the first order:

dy, dy, dy,

de — Yos dx = Y3 dx = f(CE, Y Yo y3)

We have already carried out a similar substitution in [14]. Likewise,
if we are given a system of two second order equations, for instance:

y' = (9.9 2 Z); Z"=fh@yy,2 Z),
where y and z are required as functions of #, we can replace this by a
system of four first order equations; here we introduce the four
required functions: ¥y = y,; ¥’ = y,; 2 = ¥y; 2" = y,.
The first system above can be written in the form:

dy dy
——(ﬁ ) y‘l; dxz = fl (x, yly yZ’ y3? y4);
dy, . 9y,

e = Y8 —gp — (T Y0 Y2 Ys Ya)-

Conversely, we show that integration of a system can in general
lead to integration of a single higher order equation. We shall only
consider the case of a system of three first order equations solved
with respect to the derivatives:

Y1=Fh@ Y Yo Ya)s Ys="1a(2 Y1, Ys ¥s);

(69)
Ys=13( Y1, Yo Ys)-
Let the first equation contain y,, and let us solve for this:
Yo =0 (T, Y1, Y1, Ys). (70)

On substituting in the remaining two equations of the system
we shall obtain equations of the form:

0w, dw, dw, 0o,

ox ayl Y + a—ya—y3 + ayi y’l’ = T2 (m» Y yi’ y3) N

Ys =3, Y1, Y1, Ys).

On substituting for y; from the second equation in the first, then
solving the first equation for yi, we get a system of two equations
with two required functions y, and y,, of the form:

Yi=9@ Y YL %)5 Y3 =92 Y5, Yi, ¥s). (71)
Let the first equation contain Ys; we solve for this and get

Ys = o3 (%, ¥, ¥, Y1) (72)
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on substituting in the second of equations (71), we obtain a third
order equation in y,, which may be written as:

s

5 F(CI), Y y{v ylll) (73)
Suppose that we have managed to integrate this equation:
=2z, Oy, Cp Cy).

We obtain g, on substituting in equation (72); if we then sub-
stitute in (70), we obtain y,, without further integration. If the first
of equations (71) does not contain ¥,, we already have a second order
equation for y,, and its general solution will contain two arbitrary
constants. On substituting this general solution in the second of
equations (71), we get a first order equation for y,, and integration
of this introduces a third arbitrary constant. Finally, y, is determined
from (70) without further integration.

21. Linear partial differential equations. We have so far considered
differential equations containing derivatives of functions of a single
independent variable. As already mentioned, such equations are
called ordinary differential equations. We now consider a class of
partial differential equations which is directly related to the theory
of systems of ordinary differential equations.

We return to the system of differential equations (47):

dz, — dz, _ = dzy,y ) (74)
Xl XZ XIH-I
An equation
(p(xl, xz, « ooy xn.*_l) - C

or a function ¢(z;, Z,, . . ., Tnyy), not identically constant, is called an
integral of system (74) if, on substituting in it any solution of the
system obtained in accordance with the existence and uniqueness
theorem, we obtain a constant.

Thus, let z; be the independent variable, and «,, @3, ..., Tny, be
functions of z, representing a solution of system (74). A constant
must be obtained on substituting these functions in the expression
@(Ty, Tys +««» Tnyy), 1.6. the independent variable must go out as a
result of substitution; hence the total differential with respect to z;
must be equal to zero [I, 69]:

o9 . Op dxz op dx, 6’]? dzpiy
oz, oz, dz + oz, dz, +.et 02y, dxl—_o’
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or
O

arp 0
o, 40+ Ao 2+...+——ax:i1 dz,4, = 0. (75)

But the differentials dxs must be proportional to the X, since we
have substituted a solution of system (74); hence we obtain the
following equation for ¢, on replacing the da; in (75) by the pro-
portional X:

Xla"’ + X, +...+X,,+1%=O. (76)

The function ¢(z,, ,, ..., n4,) must satisfy this equation inde-
pendently of the precise nature of the solution of system (74) that
we have substituted in the function. If we take all the solutions of
(74), we can give variables x, z,, ..., Ty, whatever values we please,
in view of the arbitrariness of the initial conditions in the existence
and uniqueness theorem, i.e. ¢(z,, Z,, ..., Tp4,) must satisfy equation
(76) as an identity in (z,, @,, ..., Zn4,). Hence we obtain the following
theorem.

THEOREM. If ¢(z;, %y, ..., Tny) = C is an integral of system (714),
the function @(x,, X, ..., Tny,) must satisfy the partial differential
equation (76).

The converse is easily proved.

THEOREM. If @(zy, @), ..., Tnyy) 8 any solution of equation (76),
2y, Ty, « . ., Tnyy) = C s an integral of system (74).

We need only substitute any solution of system (74) in ¢(z,, 5, - . .,
Zny) and take the total differential;

do (21, T ..., Tpyq) = dxl—i— a"’ doy+. .t 5 — AT

Since a solution has been substituted, the das can be replaced by
the proportional X; by (74), i.e. we write dog = A X, where 1 is a
coefficient of proportionality. Hence:

op
i) n+l)-‘l(X1 a(p+X2 aqj +. +Xn+18 )

T

do (z;, x5, ..

But by hypothesis, ¢ satisfies equation (76) identically in 2, ,, . . .,
Znyy, 80 that de(z,, @, ..., 2,4,) = 0. The expression for the first
order differential is independent of whether the variables are inde-
pendent or not [I, 153]. In the present case, after substituting a
solution of the system, ¢ will be a function of a single independent
variable, say x;; the differential of the function ¢ was equal to zero,
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i.e. the derivative with respect to z; (after substitution) is identically
zero, so that ¢ no longer depends on x;, i.e. is constant. It follows
from this that ¢ is an integral of the system, which is what we required
to prove.

The two theorems just proved establish the equivalence of an
integral of system (74) and a solution of the partial differential equa-
tion (76). If

1= Cp; = Cy; 5 o= 0y

are k integrals of the system, the arbitrary function F(py, ¢y, ..., ¢x)
is also an integral of the system, as we have seen, and we can therefore
assert that an arbitrary function of any solutions of equation (76) is
also a solution of the equation. If

P Pa (T Ty e ens Tpga) = COf (T7)

@1 (g, Ty ooy Tpp) =0y ...

are n independent integrals of system (74), the arbitrary function

F(py, @, - -, gn) is a solution of equation (76).
This can be verified directly by substituting ¢ = F(@,, @5, ..., ¢n)
in equation (76) and noting the fact that functions ¢, ¢y, ..., gn

satisfy the equation. We do not dwell on the proof of the fact that
this is the general solution of equation (76). The following rule is
obtained for integrating (76): to find the general solution of the linear
partial differential equation (76), we must form the corresponding
system of ordinary differential equations (74) then obtain n independent
integrals (17) for the system; the general solution of (76) is then

¢=F(py, @2 --., ®Pn),

where F is an arbitrary function of its n arguments.

A linear partial differential equation of the form (76) has two
characteristics: its coefficients X; do not contain the required function
@ and its free term is zero. The general case of a linear equation has
the form

op op _op —
Yl_fE’*"Yz—ax—z‘-*——i— Ynaxn—}—Yn_*_l——O, (78)
where Y, Y,, ..., Y 4, contain z,%,, ..., 2, and ¢. We seek the
family of solutions of equation (78) as the implicit function
O(Z), Tgy «vvy Ty @) =C, (79,)
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where C is an arbitrary constant. By the rule for differentiation of
implicit functions:

ow
op _ Ooxy
o, oo’
op

on substituting in (78), we get the equation for w:
. ow 0w 0w ow
Y1W+Y2_672+."+Yna:+Yn+1W:O, (792)

which has the two characteristics indicated above. We note that the
variables x,, @,, ..., Z,, ¢ can have any values in view of the arbitra-
riness of C in (79,), and hence it follows, as above, that equation (79,)
must be satisfied identically with respect to z,, z,, ..., %, ¢. Its
solution leads to integration of the corresponding system of ordinary
equations. Having found w, (79;) gives us ¢. It can be shown that,
given certain general assumptions regarding the Y, all the solutions
of equation (78) can be found in this way.

We notice that the general solution of a partial differential equation
contains an arbitrary function, whilst only arbitrary constants appear
in the general solutions of ordinary differential equations.

We consider linear partial differential equations in more detail in
Volume IV, and establish the corresponding existence and uniqueness
theorem.

22, Geometrical interpretation. We give a geometrical interpretation
of the above theory in the case of three variables. Suppose we have a
%angent field in three-dimensional space, i.e. a direction is defined
for each point of the space. On taking any system of rectilinear
: laxes, every direction (or tangent) is defined by three numbers,
Proportional to the direction cosines of the tangent, i.e. the cosines
z«“Of the angles formed by the tangent with the coordinate axes. Generally

i-8peaking, we have different tangents at different points, and the
‘;z:complete tangent field is defined by three functions:

u, ¥, 2), v, ¥y, 2), wx Y 2, (80)

8uch that the direction cosines of the tangent at a given point (z, y, )
are proportional to magnitudes (80).

We consider the same problem as in the case of a first order equation,
that of finding the curves in space whose tangents are those defined
by the field. We know from [I, 160] that the direction cosines of a
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tangent are proportional to dz, dy, dz, whilst if two directions coin-
cide, quantities proportional to their direction cosines must themselves
be proportional, i.e. we have the following system of differential
equations for obtaining the required curves in space:

dx . dy . dz
u(x, ¥, 2) v Y z) w(@ Yy 2)

(81)

Integration of this system amounts to finding its two independent
integrals:

(2, Yy, 2)=0Cp; @a(w, ¥, 2) =04, (82)

i.e. such that equations (82) are soluble with respect to any two
variables. These two equations define a certain curve in space [I, 160];
we obtain a family of integral curves of system (81) on assigning
various numerical values to C; and C,. Initial conditions amount to
specifying that the required curve should pass through a given point
(%o, Yor 2o)- The arbitrary constants C,, C, are determined by the initial
conditions.

We now turn to the geometrical interpretation of the linear partial
differential equation. We again take functions (80) as defining a
certain tangent field, as above. It is required to find a surface such
that, given any point of it, the corresponding tangent plane contains
the direction defined by the field at the point. Let the equation of a
family of the required surfaces be:

@z, ¥y, 2)=0C.

From [I, 160], the direction cosines of normals to these surfaces are
proportional to 9¢/dx, dp[dy, dp/dz, whilst the direction of the normal
must be perpendicular to the direction defined by magnitudes (80), in
order that this latter may lie in the tangent plane. We apply the usual
condition for two lines to be perpendicular [I, 160], and obtain a
linear partial differential equation for determining ¢:

0 0 0
u(z, 9, 2) 5 + 0(@,,2) - +w(@,y,2) 5~ =0. (83)

The system of ordinary differential equations corresponding to this
last equation is (81), so that the general solution of (83) has the form:

® = F(oy, g3),

whilst the general equation of the required surfaces is

Flpy, 92) =0, (84)
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where F is an arbitrary function of its arguments. We do not need to
write an arbitrary constant C in view of the arbitrariness of func-
tion F, whilst ¢, and ¢, are the two independent integrals (82) of
gystem (81). If we make a definite choice of function F, surface (84)
will evidently be the locus of the integral curves of system (81) on
which the values of the constants in equations (82) are connected by
the relationship:

F(Cy, C,y) = 0. (85)

The solution of equation (83) is generally speaking made precise
if we stipulate that the required surface should pass through a given
curve in space (L). The stipulation represents initial conditions for
partial differential equation (83). The required surface will evidently
be composed of the integral curves of system (81) which start from
points of the curve (L), i.e. the initial conditions of which are deter-
mined by the coordinates of points of (L). We obtain a definite surface
in this way, in view of the existence and uniqueness theorem for
system (81). This excludes the case when (L) is itself an integral
curve of system (81), when the above procedure leads us to (L) itself
and not to a surface.

It ean be shown that in general an infinite set of surfaces ¢ = 0
passes through the curve (L), where ¢ satisfies equation (83). A de-
tailed discussion will be found in Volume IV.

Let the equation of (L) be given as a set of two equations:

v (2,4,2) =0; v, (,9,2)=0. (86)

If we eliminate variables z, y, 2z from the four equations (82) and
(86), we obtain a relationship between C, and C, which, by (85),
also determines the form that function F must take in order that equa-
tion (84) may give the required surface passing through curve (86).

23. Examples. 1. We consider the partial differential equation:

op op . o 0P
w g by i = @yt =0, (87)
The corresponding system of ordinary differential equations is:
de  dy dz
A T &)
We found its two independent integrals in [19] above:
——ay:—- =0 224+ 42+ 22=0C, (89)
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The first equation gives a family of planes passing through the z axis, whilst
the second gives a family of spheres with centres at the origin. The integral
curves of system (88) will be a family of circles lying in these planes with their
centres at the origin. The general solution of equation (87) is

w:F(—%-, a2+y2+z2). (90)

where F is an arbitrary function of its two arguments. Let us find the form
of F such that the surface

F(% a2+y2—!—22)=0 1)

passes through the straight line
z=1, y=u= (92)

We eliminate #, ¥ and z from equations (89) and (92). The first of equations
(89) gives, together with (92):

z=1; y=0; z=0

substitution in the second of equations (89) now gives the relationship between
C, and C,:

1420; —-0,=0, ie. F(0,.GC)=1+20C—0C,.

With this form of function F, (91) becomes the equation of the required
surface:

2
142 Zz — (@2fy*+28) =0 or 2242y — ¥ w24yt 22)=0.

2. Let the tangent field defined by a system of differential equations be
such that its direction is the same at all points of space. Let (a, b, ¢) be numbers
proportional to the directioncosines of this fixed direction. The system of
differential equations will be:

dz dy dz

e or ¢de —~adz=0; c¢dy—bdz=0,

which yields at once the two integrals:
cx —az=0;; cy—bz=0,.

The integral curves are obviously parallel straight lines with the fixed direc-
tion referred to. The corresponding partial differential equation

op op
e TPy o

defines the surfaces g(z, y, z) = 0, representing the locus of certain of these
straight lines, i.e. (93) is the equation of certain cylindrical surfaces. Its general
solution has the form:

¢ = F(cx — az, cy — bz).
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where F is an arbitrary function, and the general equation of the cylindrical
surfaces whose generators have the fixed direction is

F{cx —az, cy — bz) = 0.

3. Let the tangent field be such that its direction at any given point
M(z, y, 2) coincides with the direction of the radius vector from a fixed point
A(a, b, ¢) to the point M(z, y, 2). The projections of the vector on the coordinate
axes are

z—a, Yy—b z—¢
and these quantities are therefore proportional to the direction cosines of the
given direction at M. The corresponding system of differential equations is
dv. ~ dy  dz
x—a y—b  z—c¢

and we have the two obvious integrals:

—a —b
x o Y
z—c

z—c =0
It is geometrically obvious that the family of straight lines passing through

A(a, b, ¢) is a family of integral curves. The corresponding partial differential

equation

op

oy op _
(x_“)wf(y—b)ﬁ"f‘(z‘c)”a’z‘*o

defines conical surfaces with vertex at 4, the general equation of these surfaces

being
F(x—a, yfb)=07

2—c 2 —cC

where F is an arbitrary function of its two arguments.

We remark that generally only one conical surface can be drawn through
8 given curve in space (L), generated by the radius vecters from the point A4
%o points of (L). If, however, (L) is one of the integral curves of the system,
ke. is g straight line passing through the point 4, an infinite set of conical
surfaces can be drawn to contain (L).

4. We take another system of differential equations of the form:

dz dy dz
! . 4
cy — bz az — cx bx — ay (94)

On equating all three ratios to the differential df of a new variable ¢, we can

Mrite:
dz = (cy — bz) dt; dy == (az — cx) dt; dz= (b — ay)dt. (95)

" Hence two equations are easily obtained, integrable directly. The first equation
,‘,“ obtained by multiplying equations (95) respectively by @, b, ¢ and adding,
1 Whilst for the second we multiply equations (95) by , y, z respectively then
add. This gives us the two equations:
adz +bdy +¢dz=0, xdr4+ydy +2zdz=0,
integration of which yields the two integrals of the system:
ar +by +cz2=C; @ y?+22=C, (96)
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The first integral gives a family of parallel planes, the direction cosines
of the normals to which are proportional to the numbers (a, b, ¢). The second
integral gives a family of spheres with centres at the origin. The intersections
of these planes and spheres represent the family of integral curves of system
(94), which evidently consists of circles lying on the planes and with centres
on the straight line

= _ Yy _ = o7
a b ¢’ ¢
which in turn passes through the origin and is perpendicular to all the pla,n.es.

Tt can easily be shown that the corresponding partial differential equation

op op ey 2P
(cy — bz) e + (az —cx) —53/— 4 (bx — ay) " 0

dofines the surfaces of revolution which have (97) as axis of revolution, the
general equation of these surfaces being

Flax + by +cz, x + 2 +22) =0,

where F is an arbitrary function of its two arguments. We remark that the
form of the denominators in system (97) could be obtained from geometrical
considerations by suitably specifying the tangent field as was done in pre-
vious examples. ) )

5. The problem of orthogonal trajectories in space leads to a linear partial
differential equation. Suppose we are given & family of surfaces

o (z,y,2) =0, (98)

dependent on the parameter O, so that, in general, one and only one ‘surface
of the family passes through every point in space. We require to find the

surface .
@(x, y,2) =0y, (99)

which intersects all the surfaces (98) at right angles. The conditi?n that t¥1e
normals to surfaces (99) and (98) should be perpendicular gives us a linear partial
differential equation for the required function @:

ow Op

ow Op ow azp___
ox ox

s AT )

oy oy ' oz o
The corresponding system of ordinary equations:
dz  dy _  dz
9o =~ 0w = 0w
ox oy 0z
defines the curves, whose tangents at every point are normal to surfaces (98)
passing through the point concerned. If

(100)

o (%, 4, 2) =01 (2 Y 2) =0y

are two independent integrals of system (100), the equation of the required

surfaces has the form:
F(py, ¢2) = 0.

CHAPTER II

LINEAR DIFFERENTIAL EQUATIONS.
SUPPLEMENTARY REMARKS ON THE THEORY
OF DIFFERENTIAL EQUATIONS

§ 3. General theory;
equations with constant coefficients

24. Linear homogeneous equations of the second order. The simplest
part of the theory of differential equations is that dealing with linear
equations; these have received the most detailed treatment and are
the most commonly encountered in applications. We dealt with the
solution of linear equations of the first order in [4]. We consider
linear equations of any order in the present chapter, starting with
those of the second order.

An equation of the form

Ply)=y" + pl*)y +49(@)y =0, (1)
'is called a linear homogeneous equation of the second order, where
the left-hand side is denoted by P(y) for brevity.

. It follows from the linearity of P(y) with respect to the function y

¥

S

:&nd its derivatives that, given arbitrary constants C, C; and C,,
b

P(Cy) = CP(y); P(Cryy + C,yy) = C, P(y,) + C, P(ys).

If y =y, is a solution of the equation, P(y,) = 0, and obviously

P(Cy;) = 0, s0 that y = Cy, is also a solution. Similarly, if y, and g,
1. are solutions,

y=0C,y.+ Coys (2)

8 8150 a solution, with arbitrary constants C,, C,. Thus, further solutions

' f the linear homogeneous equation (1) can be obtained by multiplying

77
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existing solutions by arbitrary constants and adding. It is obvious that
linear homogeneous equations of any order will possess the same
property. When we refer below to a solution of equation (1), it will
be assumed to differ from the trivial solution y = 0.

The existence and uniqueness theorem can be stated very simply
for equation (1), as we prove in a later paragraph: if the functions
p(x) and q(x) are continuous in the interval a << x < b, and if x, is
any « belonging to the interval, there exists one and only one solution
of equation (1) satisfying the initial conditions

y]x—xo = Yo ylgx:xo = 3/6:

where y, and yg are any given numbers. This solution exists throughout

the interval a < x < b.

We shall in future consider the solutions of equation (1) with z
varying in the interval of continuity of p(z) and g(x). In view of the
arbitrariness of z,, ¥, ¥¢ in the existence and uniqueness theorem,
equation (1) has no singular solutions.

Two solutions y, and ¥y, of equation (1) are said to be linearly
independent if no identity with respect to x exists of the form

Y+ oy, =0, (3)

where a, and a, are non-zero constant coefficients. In other words,
the linear independence of y, and y, implies that the ratio 3,/y, is
not a constant, i.e. that the derivative of the ratio
d @.)_ Y Y2 — Y ¥l 4
dz ( v ) yi ( )
is not identically zero.
We introduce into the discussion the expression

A@1Y2) = 4192 — Y291, (5)
called the Wronskian of the solutions y, and ¥,. A characteristic of

the Wronskian is that:

Ay, 3) = Ay 7O, (6)
where 4, is a constant, equal to the value of A(y,, ¥,) at * = z,.
We prove this by finding the derivative:

d4 (Y, ¥s)

o =N T Y~ Y — Y Y=Y — Y2 Y1
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Since y; and y, are solutions of equation (1), we can write:

Y1+ @)y + (@) y, = 05 y5 -+ p(@)ys + q(x) yy = 0.

We multiply the first equation by (—z,) and the second by ¥,

and add:
Y195 — Y291 + p(2) (4,95 — Y2 41) = 0
go that
dA R
W) | pia) 4 (2, ) = 0. (7)

This is a linear homogeneous equation in 4, and we obtain (6) at
once on applying (31,) of [4].

It follows from this formula that A(y,, y,) is either identically zero,
if the constant A, is zero, or is non-zero for all values of x, since the
exponential function does not vanish. We assume here that p(x) is
continuous.

By (6), we can write instead of (4):

_zs?p(x) dx

a >

d (4 Ay y2) e
dz (71') I 4o T
and hence it follows that two solutions y, and y, of equation (1) are
~ linearly independent when, and only when, Ay, y,) differs from zero,
+ie. when 4, #0.
. We now show that, if ¥, and ¥, are linearly independent solutions
of equation (1), (2) gives us, with suitable choice of constants C,
and C,, the solution of (1) satisfying any previously assigned initial
‘eonditions:

y]x=xo = Yos y,lx=xo = y(’) (8)
: Let 410, %0, Y10, Y30 denote the values of 3, and ¥, and their derivatives
g for © = z. To satisfy the initial conditions (8), we have to determine
ithe C, and C, in (2) from the system of equations

Ciy0+ Coyao = Y3 Ci Y10 + Cr 30 = yg.

It follows from the linear independence of ¥,, ¥, that

; Ay = Y10 Y20 — Y20 Y10 # 0,

80 that the system written gives us fully defined values for C, and C,,
Iwhich proves our assertion.

t  But by the existence and uniqueness theorem (3], every solution
bof equation (1) is fully defined by its initial conditions, and we can
itherefore state the following proposition: if Y, and ¥y, are two linearly
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independent solutions of equation (1), all the solutions of the equation
are given by (2).

The problem of integrating (1) thus reduces to finding two linearly
independent solutions. Let y, be a solution, and y, any other solution.
We get by integrating relationship (7):

- zgp(x)dx de

Y
gj‘zdofe Ty or y2=A0ylje

—jp(x) dx dz

I (9)
thus, if a particular solution of equation (1) is known, its second
solution can be found by using (9), where 4, is a constant which can
be set equal to unity.

It must be remarked that it proves impossible to find this solution
explicitly, or even with the aid of a quadrature, in the general
case when p(z) and ¢(z) are functions of x. We shall see, however,
that the solutions are obtainable explicitly in some particular
cases, including that when p(x) and g(z) are constants, and not
functions of z.

We also give later a method of constructing solutions which is
often used in applications, viz., the construction as an infinite series.

25. Non-homogeneous linear equations of the second order. An
equation of the form:

u” + p(x) u’ + q(x)u = f(z). (10)
is called a non-homogeneous linear equation of the second order.
If p(x), q(x) and f(xr) are continuous in an interval a < a < b,
we have, as will be shown later, exactly the same existence and
uniqueness theorem as for the homogeneous equation (1). Below,
we shall consider the solutions of equation (10) in the interval of
continuity of p(z), ¢(z) and f(z).
Let u = u, be a solution of the equation, so that:

ui + ple) vl + (@) u, = f(2). (11)
On introducing a new function y instead of w:
U=y + u. (12)

and substituting in (10), we get:

[V +p@y +q@y] + [u]+ p (@) v + ¢ (@) w] = f(2).,
or, by (11),
Y +p@)y +q(x)y=0. (13)
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This last equation is called the homogeneous equation corresponding
to equation (10). If y; and y, are two linearly independent solutions
of (13), we have, by (12) and the proposition of the previous article,
the formula:

u=01y + Cyys + Uy,

where C; and C, are arbitrary constants, giving all the solutions of
equation (10). The property can be stated thus: the general solution
of a mon-homogencous linear equation of the second order is equal to
the sum of the general solution of the corresponding homogeneous equation
and any solution of the non-homogeneous equation.

The above proof is obviously also applicable to non-homogeneous
linear equations of any order, so that these possess the same property.

The knowledge of two linearly independent solutions of the homo-
geneous equation (13) enables us, as we shall now see, to find a parti-
cular solution of equation (10), and hence its general solution. We use
here the method known as Lagrange’s method of varying the arbitrary
constants [4].

Let y; and y, be two linearly independent solutions of (13). The
general solution is expressed by (2), as we know.

We shall seek a solution of (10) in the same form, except for taking
C, and C, as required functions of z instead of as constants:

u =0, () Yy + 2 () Y. (14)

Since we have two required functions, and not just one, we can
subject v,(zx) and v,(z) to a further condition, apart from (10). We lay
down the following condition:

v (2) ¥, + ¥ (%) ¥, = 0. (15)
On differentiating (14) and using (15), we obtain:

q(@)-lu =0, (2) 4 + 02(2) Y2
p@)- v =0 ()41 + 2, (2) 92
1-lu" = vy (@) g1 + vz (2) 95 + v () 91 + ©2(2) %
We substitute in the left-hand side of (10), and get:
n@ @y +a@y]+ 0@ Y+ @y +a@ ]+

+ o (@) y1 + v (@) ¥y = f ().
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Bearing in mind that y, and y, are solutions of homogeneous
equation (13), and recalling (15), we have the system of equations

o1 (2) Y1 + 03 () Ya = 0; v (V) y] + 03 (2) gy = [ (%) (16)
for determining »;(z) and v;(x).
By the linear independence of solutions y, and y,,
A Yo) =Y1¥2 — %291 # 0,

so that system (16) fully defines vi(x) and vz(z). We find v (z) and
vy(x) by carrying out the integrations, then substitute in (14) and
obtain the solution of equation (10).

26, Linear equations of higher orders. Higher order linear equations
possess many of the properties of second order equations. We state
these without dwelling on their proof.

An equation of the form

YO 4+ p (@) YD+ () Y L (@) Y+

+ pa(0)y =0. (17)
is called a linear homogeneous equation of the n-th order.
If y, 45 - .., Yr are solutions, the sum

Ciyy+Coyat. ..+ Cryy

where Oy, C,, ..., Cy are arbitrary constants, is also a solution. The
proof of this is exactly as for second order equations [24].
The statement of the existence and uniqueness theorem is also as

for second order equations, with the initial conditions taking the form:
Ylomxe =0 ¥ limxo = Y03 Yo e =y,

Solutions ¥, ¥ - - -, Yx are said to be linearly independent if there
exists no identity in z of the form:

oY+ oY, +. A gy =0

with constant coefficients a,, a,, ..., ay, not all of which are zero.
If 4, %5 - - -» Yn are n linearly independent solutions of the equation,
all the solutions are given by the formula:

y=0Cy+Coto+...+ Cpn, (18)

where the C, are arbitrary constants. The solution satisfying the initial
conditions given above can be obtained by suitable choice of the C;.
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A non-homogeneous linear differential equation of the n-th order has
the form:

w™ 4 p (2) w4 py (2) w4 L
+ Pna (@)U + pp(2) u = f (). (19)
If % is a solution of this equation, and ¥, y,, ..., y, are linearly

independent solutions of the corresponding homogeneous equation
(17), the general solution of (19) is given by

u=01?/1+02?/2+---+0n?/n+u1,

where the C; are arbitrary constants.
With this, if y,, %, - .., ¥, are known, the solution of (19) can be
found from the expression:

uzvl(x)?/1+”z(x)?/1 +'--+vn(x)yny

where the v”,(z) are determined from the system of first degree equa-
tions:

vi(“')?/l‘*‘Uzl(x)y2+---+v;:(x)?/n=0
@)y + @)y +.. . F o)y, =

vi(@) gD + o (@)Y . o () gD =0
v (@) g+ o (@) YP Y AL+ o (2) YD = f(a).

It may be pointed out, to the reader familiar with determinants, that the
Recessary and sufficient condition for linear independence is precisely analogous
§0 that given above for second order equations. Let Y1, Yz, « » +» Y, be solutions
of (17) as before. The following nth order determinant is called the Wronskian
of these solutions:

Y1 Ypseoes Yn I
vh o Y. wn
AYy Yore oo Yp)= | » “ "
(Y Y2 Yn) Y1 Yo2re ey Yn

............

and an expression can be derived for this, analogous to (6):

z
- d
AW Ygro v s 4p) = 4,8 :s.pl(x) x,
:;:;el‘e z'lo i;ja the .value of 4at x = z,. It follows from this expression, as above,
b A is either identically zero, or does not vanish for any value of z. A neces-
Sary a.nd sufficient condition for the linear independence of solutions y,, Ys»
*++»Yx is that the Wronskian should not be identically zero. With this, the

. arbitrary constants of (18) are fully defined for any initial conditions. As in
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the case of second order equations, the existence and uniqueness theorem
gives the solution throughout the interval of continuity of the coefficients

21(®), D@ - -, Pu(®) Of the equation.

27. Homogeneous equations of the second order with constant
coefficients., Before dealing with equations with constant coefficients,
we prove a formula of the differential caleulus which will be required
later. We are familiar with the formula for the derivative of the
function e™, where r is a real number:

(e™) = re'™.
We prove that the same formula applies when 7 is complex and z
is the usual real variable, i.e.
(6(@+bDdxy! — (g 1 bg) e(@rbdx,
It follows from the definition of an exponential function with complex
exponent [I, 176] that:
e(@+00x — e®(cos bx + sin bw).

We get by differentiation in accordance with the usual rules:

(e@+bdx)’ — qe® (cos bx + ©sin bx) + be®™ (— sin bx + ¢ cos bx),
or, on taking ¢ outside the second bracket and noting that 1/i = —1,

(e@+dx)" — qea* (cos bx 4 ¢ sin bx) 4 bie®* (cos br + sin bx) =

= (@ + bi) e (cos bx + isin bx) = (a -+ bi) e@*oDx,

which is what we wished to prove.
We now turn to the solution of a linear homogeneous equation
of the second order with constant coefficients:

¥ +py +qy=0, (20)

where p and ¢ are given numbers. We substitute a function of the
form e™ for y in the equation, where r is a real or complex number
which we require to find:

y =e (21)
We get by differentiating and taking €™ outside the bracket:
e (r*+pr+q) =0,
so that (20) will be satisfied if 7 is a root of the quadratic equation:

rtt+pr+9=0, (22)
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this latter being called the characteristic equation of equation (20).
If the quadratic equation has two distinct roots, 7 =, and r = r,,
(21) gives us two linearly independent solutions of the equation:

Yy, =", gy = ef¥, (23)

This follows easily from the fact that the ratio e"*:e™™ = (i~ 7%
is not a constant. We now take the case when (22) has equal roots,
i.e. when p? — 4¢ = 0, the single root of the equation being given
here by:

rlzrzz—%. (24)

Since the method described has led us now only to the one solution
y; = e, the other solution remains to be found; this is done by
applying the following argument.

We slightly alter the coefficients p and ¢ so that the roots become
distinct; for instance, we may let the root r, keep its former value
(24), whilst the root r, is made slightly different. With this, two
solutions (23) are obtained. We subtract these two solutions and
divide by the constant (r, — r;), which again gives us a solution [24]:

eraX —_ ohX

Te— 1Ty

We now let the altered coefficients p and ¢ tend to their original
values, for which equation (22) had a double root. With this, r, tends
to r,, and both numerator and denominator tend to zero in (25),
8o that the fraction as a whole tends to a limit equal to the derivative
of e™ with respect to r at r = r,. The second solution of the equation
is thus y, = ze™*. Hence, in the case of equal roots of equation (22),
we have the following two linearly independent solutions:

Y, =%y, = xe™*, (26)

We can verify by direct substitution that Y, is in fact a solution
of the equation. The left-hand side of (20) becomes:

(r§ we™™ + 27, e"%) + p(r, xe™ 4 ") L+ gre* =
= ze™* (1} + pry + q) + e (2r, 4 p).

The first term on the right is zero, since 7 = r, is a root of (22), whilst

. the second term is zero by (24); hence ¥, is a solution of equation (20).

We consider the coefficients p and ¢ as real numbers. But the
oots obtained on solving the quadratie equation (22) may be either
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real or complex. If (22) has real and distinct roots, (23) gives two
linearly independent real solutions, and the general solution of the
equation is:
y = C,eM* 4 Cye™*. (27)

Let equation (22) have complex roots; they must be complex con-
jugates [I, 189], ie. r, =a + Bi and r, = a — fi, and (23) gives
the solutions:

y, = eCFX — % (cos Bz + 4 sin f);

y, = e(@=PD% — ¢9% (cos fir — ¢ sin fz).

We obtain further solutions by taking the linear combinations of
these solutions:

1 N 1 o
5 Y1+ y2) =0 cos fr, 5 (y, — y2) = o sin fz.

These two solutions are also linearly independent, so that in the case
when equation (22) has complex roots r =a - fi, the general

solution of the equation is:

y = e™ (C, cos fzx + C, sin fz), (28
Finally, if (22) has equal roots, the general solution is, by (26):
y = (0, + Cyz) e, (29)

We also note the particular case of (28), when equation (22) has pure
imaginary roots, i.e. when a = 0. We must have p = 0 here, whilst
¢ must be a positive number. If we write ¢ = k%, we have roots 4 ki
for (22), and the equation

Y+l =0 (30)
therefore has the general solution:

y = Cl Cco8 kx —l'— 02 Sinkx- (31)

28. Non-homogeneous linear equations of the second order with
constant coefficients, We now take the non-homogeneous equation

Y + oy + qy = f(=), (32)

where p and g are given real numbers as before and f(z) is a given
function of z. To find the general solutionof this equation, it is sufficient
to find any particular solution and add this to the general solution
of the corresponding homogeneous equation (20). Since the general
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solution of the homogeneous equation is known, the particular
solution can be found with the aid of a quadrature by using the
method of variation of the arbitrary constants [25]. Let us take as
an example an equation of the form:

¥+ by = fa). o (33)

The' general solution of the corresponding homogeneous equation

is given by (31), and we must seek the particular solution of equation
(33) in the form:

u =, (x) cos kx + v, () sin kx, (34)

where v,(x) and v,(z) are required functions of z. Equations (16) now

lead to a system of two linear equations for the derivatives of these
functions:

v} () cos kx + v} (@) sinkx = 0

— v; (@) sin kx 4 v} (%) cos kx = if(ac).

k
Solving these gives us:
’ 1 .
v () = — —k—f(x) sin kx; o} (x) = —]t—f(:c) cos kx.

We write the primitives as integrals with variable upper limits and
with the variable of integration denoted by é&:

v, () = — %Jﬂf(f) sinké d&; v, (x) = %jf(.f) cos k& dé,

where , is a fixed number. Substitution in (34) gives us the particular
solution:

s k. ! . in v
5 @) sinke g+ 2B [fycoskeds  (34,)

Ty Lo

i or, on taking under the integral sign the factors independent of the
J; Vveriable of integration:

U = %J‘f(f) sink (x — &) d¢, (345)

and the general solution of (33) becomes:

y = C, cos kx + C, sin ke -+ %jﬂs) sin k(z — &) A&,
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We notice one point in connection with (34,). The variable z has a
double role on the right-hand side of this expression. Firstly,  is
the upper limit of the integral, and secondly, it appears as an additional
parameter (and not as variable of integration) under the integral
sign, being reckoned constant whilst the integration is carried out.
It is easily shown that the particular solution (34,) satisfies zero
initial conditions at * = z,, i.e.

u'x-———xo =0, ullx=xo =0. (343)

The first of these equalities follows directly from (34,), since the
upper and lower limits of integration coincide at r = ,, and the
integral vanishes. The second equality is obtained by finding u’ from
(34,), bearing in mind that the derivative of an integral with respect
to its upper limit is equal to the integrand at the upper limit. We
get after obvious cancelling:

u' — sinks [ f(§) sin k& d& + cos ke | f(€) cos kEdE,
Zq Zo
whence the second equality of (34;) follows at once.

29, Particalar cases. With special forms of the right-hand side of equation (32),
the particular solutions can be found much more simply, without recourse
to the method of variation of the arbitrary constants. We start by proving a
lemma. Let the right-hand side of (32) be the sum of two terms:

Yy +py + qy=f, (@) + f2 (@), (35)

and let u,(x), u,(z) be particular solutions of the non-homogeneous equations
whose right-hand sides are respectively f(z) and f,(7), ie.

ui + pui -+ quy = f (2); uy -+ pus + qug = [y ().
We obtain on adding:
(1, 4 ug)” + Py, + us) + gl + ug) = f () + fo (),

so that (4, + u,;) is a particular solution of equation (35).
Let us now take a non-homogeneous equation of the form:

Y+ py’ -+ qy = aek%, (36)

where a and k on the right-hand side are given numbers. We make use in future
of an abbreviated notation for the left-hand side of equation (22), writing

@(r)=r +pr+gq. (37)

We shall seek a solution of (36) in the same form as its right-hand side, i.e.
in the form:

y =a, ekx,
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where a, is a required numerical coefficient. On substituting this in (36) and

:ancel]ing e, we get an equation for a; which, by (37), can be written in the
orm:

ek)a, = a.

If k is n<.)t a root of (22), i.e. (k) # 0, this last equation gives us a,. Now let
k be a simple root of (22), so that (k) = 0 but ¢’(k) # 0 [I, 186]. We shall
seek the solution of (33) here in the form:

Y = a, xefX,
We obtain on substituting in the equation and cancelling e**:

p(k)a, z + ¢’ (k) a, = a,
or, since (k) = 0,
(p, (k) al =a,

whence we find 3, si.nce @’(k) # 0. Finally, if k is a double root of (22), so that
fp(k) = @’(k) = 0, it is easily shown, as above, that the solution of the equation
is to be sought in the form:

Y = a, a? ekx,

The same method can be used for finding the solution in the more general
case, wher’l the right-hand side has the form P(z) ¢**, where P(x) is a polynomial
inz. If k is not a root of equation (22), the solution is to be sought in the form:

Y = Pl (.’D) e"", (38)

where P,(z) is a polynomial of the same degree as P(z) and the coefficients
of Pl(k:r) are required to be found. On substituting (38) in the equation, cancelling
out ', and equating coefficients of like powers of z, we obtain equations
for the coefficients of P,(x).

In the case f)f .k being & root of equation (22), the right-hand side of (38)
has to be multiplied by the factor x or a2, depending on whether % is a simple
or a double root of (22).

) We now turn to the case of a right-hand side containing trigonometric funec-
tions. Let us take the equation, to start with:

y" + py’ + qy = e** (a cos Iz 4 bsin Iz). (39)
By using the expressions [1, 177]:
Ixi —Ixi 1 _
cos lz = o +te R sin lz = o —o~H
2 2¢ ’

Wwe can put the right-hand side of equation (39) in the form:
Aek+Dx 4 polk—lx

Where 4 and B are constants. If the complex numbers (k & IZ) are not roots of

equation (22), the solutions must, in accordance with the above, be sought in
the form: ' ¢

y= A, oktihx L p olk—l)x
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or, as can be seen on returning from exponential to trigonometric functions via

the formula
etld — cos lx + ¢ sin Iz,

the solution of (39) is to be sought in the form:
y = o (@, cos lx -+ b, sin lz), (40)

where a, and b, are required constants. Similarly, it can be shown that the right-
hand side of (40) must be multiplied by x if (k¥ + &) are roots of (22). The
constants a, , b, are obtained by substitution of expression (40) in equation (39).
We remark that, if say only cos Iz appears in the right-hand side of (39), we
gtill have to take both the coslx and the sinlx terms in the solution (40).

We note a more general result, without dwelling on its proof. If the right-
hand side has the form:

e [P (z) cos Iz + Q (x) sin ],

where P(x) and Q(x) are polynomials in @, the solution must be sought in the

same form, -
ok [P1 (@) cos Iz + @, (2) sin iz],

where P,(z) and @Q,(z) are polynomials in  of degree equal to the greater of
the degrees of P(z) and Q(z). If (k -+ Ii) are simple roots of equation (22), a
factor z must be written in front of the solution.

30. Linear equations of higher orders with constant coefficients.
We state without proof in the presentsection properties of higher
order equations analogous to the above. Later on, we explain the
general theory of linear equations with constant coefficients by
using a special method, known as the method of symbolic factors. The
present properties will then be proved.

A homogeneous equation of the nth order has the form:

YD £ p Y™t Py ¥ PaY =0, (41)

where P, Py, - .-, Pn are given real numbers. We write down the
characteristic equation, analogous to equation (22):

M4 P T+ P =0 (42)

For every simple real root of this equation, 7 = r;, thereisa correspond-
ing solution y = €. If the root has multiplicity s, the following s
solutions will correspond to it:

er,x, xen*, ..., 25— 1enx,
The solutions

e cos fr and e sin fx.

i Which gives
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correspond to a complex conjugate pair of simple roots r = a - fi.
If the roots are not simple but have multiplicity s, the following 2s
solutions correspond to these:

e™* cos fx, xe** cosfx, ..., %! e* cos fr

e™ sin fx, we®™ sin fz, ..., x> 1e*sin px.
In this way, all the roots of equation (42) lead us to solutions of

equation. (41). On multiplying these solutions by arbitrary constants
and adding, we get the general solution of the equation.

To discover & particular solution of the non-homogeneous equation:

v+ " b P Y+ Py = (@)

we make use of the method of variation of the arbitrary constants [26].
If the right-hand side has the form P(x) %, where P(z) is a polynomial and
(c is not a root of equation (42), the solution of the equation can be sought
in the form y = P,(x) *, where P,(z) is a polynomial of the same degree as
P(z). I k is a root of (42) of multiplicity s, we have to put y = z° P,(z) ek*:
If the right-hand side has the form '
f(x) =" [P (2) cos Iz -+ Q () sin Iz] i (43)

and (k 4 ) are not roots of equation (42), the solution is to be sought in the
same form:

y =" [P, (2) cos Iz + @, () sin lx],

where the degrees of polynomials P;(z) and Q,(z) must be taken equal to the
greater degree p of polynomials P(z) and Q(x).
On the other hand, if (k - %) are roots of (42) of multiplicity s, the factor
#* must be written in front of the right-hand side of the last formula.
Examples. 1. We take the equation

y” — 5y’ -+ 6y = 4 sin 2z.
The corresponding characteristic equation
2 —5r+6=0

hes roots 7, = 2 and ry = 3. The general solution of the homogeneous equation

becomes
C, o™ + C, 6™, (44)
The particular solution of the equation is to be sought in the form:
Y =a, cos 2xr + b, sin 2x.
We get on substituting in the equation:

(2a; — 10b,) cos 22 4 (16a, — 4b,) sin 2z — 4 sin 2z,

2a, — 10b, = 0; 16, — 4b, =4,
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whence a, = 5/19 and b; = 1/19, i.e. the particular solution is:

5 1
y:EcosZ'r-{-ﬁSlnz’E-

We obtain the general solution of the equation on adding this to (44).
2. We take the fourth order equation:

y(iv) — 2y + 2y — 2y .y =x sin z.
The corresponding characteristic equation
4 —278 L 22 — 29 . 1 =0
can be put in the form:

(P +1)(r—1)2=0

which has a double root »; = r, = 1 and a pair of imaginary conjugates r,, r,==
= +4. The general solution of the homogeneous equation becomes:

(Cy+Cya)e* +Cyecosz+ O, sin x. (45)

On comparing the right-hand side with (43), we see that here k = 0, [ = 1,
p =1, and k 4 li = 47 are simple roots of the characteristic equation, so
that the particular solution must be sought in the form

y==a [(ax + b) cos z + (cx + d) sin z] = (aa® + bx) cos = + (ca? + da) sin z,

where we require to find the coefficients a, b, ¢, d.

31. Linear equations and oscillatory phenomena. We indicate the
importance of linear equations of the second order with constant.
coefficients in the study of oscillatory phenomena
--------- We denote the independent variable by ¢ (time) and
the function by x; this notation will often be used

in future.
TR I_X We consider a body of mass m suspended from a
spring and oscillating vertically about its position of

Fre. 22  equilibrium, where the weight of the body is exactly

balanced by the elastic force of the spring.

Let z be the vertical distance of the body from the equilibrium
position (Fig. 22). Suppose that the motion takes place in a medium
whose resistance is proportional to the velocity dw/de.

The following forces will act on the body: (1) the restoring force
of the spring, tending to return the body to the equilibrium position,
which we shall take as proportional to the displacement x of the body
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from the equilibrium position, and (2) the resistive force, proportional
to the velocity and acting in the opposite direction. The differential
equation of motion becomes:

de _ ,do

dzzx dz
mw-— W—Cm, or m-dt—z—i—b-aT—l—cfE:O.

We consider as a second example the motion of a simple pendulum
of length ! in a medium of resistance proportional to the velocity.
The differential equation of motion becomes, as is familiar from

mechanics:
dz o
dt2

6

ml = — mg sin 0 — b%, (46)

where 0 is the angular displacement of the pendulum from the
equilibrium position. If the oscillations of the pendulum about the
equilibrium position are small, we can take the angle 6 for sin 6,
and equation (46) reduces to:

dz6

ml —q

+b5-22 4 mgo—o. (47)

If there is an additional external force, depending on time, acting
on the pendulum, we get a non-homogeneous equation instead of (47):

20 7}
ml S b0 4 mg 0 = ft). (48)

The motion in both the above cases is defined by a linear differential
equation of the second order with constant coefficients.
We shall write this equation in future in the form:

LE Lo ¢ kr=0 (49)
dz d
S - 2h—g- + kPw = ft), (50)

We generally arrive at such an equation when considering the
small oscillations of a system with one degree of freedom about its
position of equilibrium. The term 2k dz/dt comes from the resistance
of the medium or from friction, & being called the coefficient of
resistance; the term k2 2 comes from the internal forces of the system,
tending to return it to the equilibrium position, k% being referred to
ag the coefficient of restoration; and the term f(f) in equation
(50) is due to the external disturbing forces that act on the system.
An equation of the type written is encountered, not only in the study
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of the oscillations of mechanical systems, but also in other problems
of oscillatory phenomena in physics. We take as an example the
discharge of a condenser of capacity C through a circuit with resistance
R and inductance L. If v is the voltage across the plates of the con-
denser, we have for the circuit

v=Ri+ L9, (51)

where ¢ is the current in the circuit. In addition, the relationship
is known to hold:

. do

Let there also be a source of electromotive force E in the circuit,
which we shall take to be positive if it acts in opposition to the
direction of . We have in this case instead of (51):

. dz
v—E=R1+Ld—:.

On substituting (52) in the equation written, we get the differential
equation:

L0S% RS to=E
or
d2o R de v E
@ YL@ T Io T Io (53)

On comparing this equation with equation (50), we see that the
term (R/L) dv/d¢ is analogous to the term due to resistance, the term
v/LC is analogous to that due to the restoring forces, whilst the
term E/LC corresponds with the term from the disturbing force.

If we find » from equation (53), we can also find ¢, by substituting
in (52).

32, Free and forced oscillations. We consider the homogeneous
equation
x" 4+ 2hx’ + k2x =0, (54)

corresponding to the case when no external forces are present. The
solution of this equation gives the free, or proper, vibrations. The
corresponding characteristic equation will be:

72 + 2hr + k2= 0. (55)

We split up the further discussion into separate cases.
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1. Damped vibrations. In most cases the coefficient of registance
h is fairly small compared with the coefficient of restoration %2,
so that (h* — k?) is negative: * — k? = —p? Equation (55) has in
this case conjugate imaginary roots: r, r, = —h + pi, and we have
for the general solution of (54):

x = e~ (C, cos pt + C, sin pt). (56)
On setting
C,= Asing; Cy= Acosg, (57)
solution (56) can be written in the form
x = Ae Msin (pt + @), (58)

or, if we write p = 2n/7,
- . 2mt
z = Aehsin (—: + (p) . (59)

Here, v is the period of free vibration, A is the initial amplitude,
and @ is the initial phase. If the resistance of the medium is neglected,
i.e. we put h = 0, the roots of equation (55) are r = 4k, and we
obtain in place of (58):

x = Asin (kt 4+ ¢). (60)

This gives us a pure harmonic oscillation of period 7 = 2n/k.
Formula (59) represents damped oscillations [I, 59], the speed of
~damping being characterized by the factor e™™. In an interval of
time equal to the period, the amplitude decreases in the ratio e™'.

- The values of the constants O, and C, in (56), or what amounts to

j‘ the same thing, constants A and ¢ in (58), depend on the initial
~conditions. Suppose the initial conditions are:

: Tlpmo = L5 X'fimo = Zg- (61)
On substituting ¢t = 0 in (56), we get C; = x,. We now differentiate
. (56) with respect to t:

&' = — he="(C, cos pt -+ Cysin pt) + pe~* (— C, sin pt 4 C, cos pt),
hence we find, on substituting ¢ = 0:

i (62)

and the solution satisfying initial conditions (61) is finally:

x = e M (xo cos pt B+ hay ;h% sin pt) (63)
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We notice that the coefficient of damping & and the frequency of
oscillation p = |/k* —A? in solution (63) are completely defined by
the coefficients in equation (54). As regards the amplitude 4 and
initial phase @, which are dependent on the initial conditions, we can
write, by (57):
zg + hx,

Asing = 2;; Acosp= ;

b

from which A and ¢ may be determined. If & = 0, p must be replaced

throughout by k.
2. Aperiodic motion. If (h* — k?) is positive:

m—k—g,
the roots of (55) will be:
rn=—h+gqg r9=—h—gq, (64)
and we:have [27]:
x=C,eW Mt | 0,e @, (65)

Since we obviously have here ¢ < k, both roots of (64) are negative,
and z therefore tends to zero on indefinite increase of .
We differentiate equation (65) with respect to ¢:

o = Cy(q — h) o™ — Cy(q + h) @™, (66)

On putting ¢ = 0 in (65) and (66), we get two equations for 0, and C,
in terms of the initial conditions (61):

Oy + Co=10; (g—h)Cr—(g+h) (=2,
whence

01= <q+h)xo+m(’)_.

— h)xy — )
% ; Cy = {g=h 2 —x .

2q
3. Special case of aperiodic motion. If, finally, hr? — k? = 0, equation
(55) has a double root r, = r, = —h, and we get [27]:
x=e M (C;+ Cyt). (67)

Since fe—™ tends to zero on indefinite increase of ¢ [I, 66], expression
(67) also tends to zero.
The non-homogeneous equation

a" + 2ha’ + k2 x = f(¢), (68)
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in which the right-hand side f(t) is due to external forces, defines
forced vibrations. In the case corresponding to pure harmonic free
vibrations, we have:

2" 4 k2 = ft) (69)

and the general solution here is [28]:

!
x = C,coskt 4 Cysinkt + e [‘f(u) sin k(t — u) du,
.

where the last term on the right gives the pure forced vibrations,
i.e. the solution ef equation (69) satisfying the zero initial conditions:
pmo = |jo = 0. (70)

It can be shown, by using the method of variation of the arbitrary
constants, that in the case when the free vibrations are damped, the
particular solution of (68) satisfying initial conditions (70) is

t

%y (2) = —;—i— e_"‘fe"" f(u) sin p(t — u) du, (11)

In the aperiodic case, the particular solution becomes:

t t

1
Xy (t) = -é—q—e(q"") ‘Je(h“q) “fu) du — —2—1? e(‘”")‘fe(q*")" flw)du. (72)
0 0

We leave the proofs to the reader.

. 33. Sinusoidal external forces and resonance. In practice, the right-hand side
i8 often found to be sinusoidal:

a” + 2ha’ + ko = H sin (wt + ¢,). (73)

We shall seek the solution here in the form of a sinusoidal quantity, of the
8ame frequency w as the right-hand side [29]:

x = N sin (@t 4 ¢, + §,). (74)

We nee'd to defipe the amplitude N and phase displacement of this vibration.
We substitute expression (74) in equation (73):

— w? N sin (wt + ¢, 4 8) 4 2ho N cos (ot + ¢, + 6) +
+ k2 N sin (0t 4 @, 4- 6) = H sin (ot + ;).

We write the argument of the trigonometric functions on the left of this
t equation as the sum of the two terms (wt 4 ¢,) and 5. We now use the
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formulae for the sine and cosine of a sum, and obtain:
[(k* — w?) N cos 6 — 2hewN sin d] sin (ot + ¢,) +
+ [2hwN cos § 4 (k* — w?) N sin ] cos (ws + @) = H, sin (ot -+ ¢,).

On equating the coefficient of sin (wt 4 ¢,) to the constant H,, and the
coefficient of cos (wt - p,) to zero, we get two equations for N and 4:

(k* — w?) Ncos § — 2hoN sind = H;; 2hoN cosd + (k2 — »?) N sin d = 0.

0
We solve these with respect to cos § and sin §:

(k% — o?) H,

. 2ho H,
N{(k? — ?) f-4h2 0?] °

N[(k? — w?)? 4 442 »?]

cos 0 = sin § = —

Squaring both sides of each and adding gives:

— Hy
T ON[(R® — wi)? L 4Rt w?]

whence we find

Ne e -2 -, 75
Y (k2 — 0?)? 4 4h? w? (7o)
On substituting this value for N in the above expressions for sin § and cos 4,
we obtain the formulae for 4:
ke — w2 2hw

cos d = ——; sinf0= — —= " |
}/(kz —w?)? L 412 w? V(k: — w?)? 4 4h? w?

76)

Having found N and 6, (74) now gives the sinusoidal part of the solution
of equation (73), whilst its general solution becomes

x = Ae~"sin (pt + ¢) + N sin (ot + @, + 0), 77)

where A and ¢ are arbitrary constants, determined by the initial conditions.
We assume here that h%2 — k2 = —p? < 0, ie. that the free vibrations are
damped. The first term in (77) rapidly decreases with increasing ¢, due to the
presence of the factor e~ !(h > 0), so that this term only has & noticeable
influence on z for ¢ close to zero (transient process); afterwards, « is deter-
mined almost exclusively by the second purely sinusoidal term, which is inde-
pendent of the initial conditions (steady-state process).

We now investigate expressions (75) and (76), which define the amplitude
N and the phase difference ¢ between solution (74) and the right-hand side of
equation (73).

If the right-hand side of equation (73) consisted only of the constant H,,
the equation would be

o’ + 2ha’ 4 k2x = H,
and would have an obvious particular solution, in the form of a constant:

H,

o=
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This is the statical deflection, which would be produced by a constant force.
We introduce into the discussion the ratio
N

A= —
&’
which gives a measure of the dynamical susceptibility of the system to the
action of external forces. We get by using (75) and the expression for £,
i k? _ 1
Ykt — w?) + 4h2 w? w\:  4h? @
-5+
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It is clear from this last expression that A depends only on the two ratios

w 2h
q= _k‘) =T- (78)

The mechanical significance of the first ratio may be explained as follows.
If there were no resistance, the free vibrations would be given by (60):
x = A sin (kt 4 @)

and the period would be 7 == 2n/k. Let the period of the disturbing force be
denoted by 7' = 2n/w. We now have for q:

T
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i.e. g is equal to the ratio of the period of free vibration of the system without
resistance to the period of the disturbing force.

We now have for A:
1

VA= 7 g
where ¢ is as described above, whilst the constant y is obviously independent
of the action of external forces from its definition. Since % is small, y is usually
small, and if q is not close to unity, the value of 1 is approximately 1/(1 — ¢%).
Figure 23 illustrates A as a function of ¢ for various given values of y.

On dividing numerator and denominator in expressions (76) by k2, we get
the formulae:

A (80)

cosd=(1—¢%)% } (81)

sin § = — ygA,

These give the phase difference between the external force and the disturbance
produced by it.

Since 4 depends on g, it is indirectly dependent on the period 7T of the external
force. Let us find the maximum of A as a function of g. All we need for this is
to find the minimum of

1
=@+ e
as a function of ¢%. Itis easily shown that the minimum occurs withg? =1 —

— »%/2, and isequal to (y? — y'/4). Hence it follows that maximum A occurs
with

-2
g= . (82)
and is equal to
1 _ 1 1
max"?' —————_ﬁ .
4

For y small, the g corresponding to maximum A ig near unity, i.e. the period
of the external force which, with a given amplitude, produces the greatest
effect is close to the period of the free vibration. The difference between these
periods, which depends on , is due to the presence of resistance.

If there is no resistance, y = 0, and maximum A is infinity, occurring at ¢ = 1.

In this case, characterized by the conditions k = 0 and o =k, equation

(73) becomes
a” + k2o =H,sin (kt + @) (83)

and its solution cannot in fact be sought in the form (74).
We suggest that the reader prove that equation (83) has the solution

— H,
= —— tcos (kt + @),

which contains ¢ as a factor [29].
We return to the case when resistance is present, i.e. b % 0. As is clear from
the graph, A increases rapidly before the maximum, and decreases rapidly
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afterwards. This is also easily seen from (80), with small y. On substituting in
{81) A, and the expression for g of (82), we get:

-5
1 A
cosé:iz’_-- e+ sind= 2

4 T4
whence it is clear that, for greatest effect of the external force, and for small
y, the phase difference § is close to (— 7/2). ’

We now return to (77). Even for fairly small values of ¢, the first term giving
the free damped vibrations, will be small compared with the second. V\’fe shall
now vary o, i.e. the period T' of the disturbing force. By what has been said
above, the following effect will now be obtained: as T approaches a certain
value, the forced vibrations will rapidly increase, attain a maximum, and then
rapidly fall off as T' passes the value concerned. This phenomenoryl is called
resonance. It is encountered in a great variety of processes of an oscillatory
nature: in mechanical vibrations, electrical oscillations, sound, etc.

We now suppose that the right-hand side of the equation contains the sum
of several sinusoidal quantities:

m
@’ + 2ha’ + ko = .2]‘31 sin (wit 4 @). (84)
S

For every term on the right, there is a corresponding proper forced vibration
of the form

Nisin(w,t+¢>i+z§i) (z'=1,2,...,m),

?vhere N;and §; are given by (75) and (76), if the right-hand side of the equation
18 known. The sum of the above forced vibrations will correspond to the sum
¥ of the external forces, i.e. the

;pa.rticula.r solution of equation
. (84) is [29]

g e

m
= & Nisin (o + g1+ 8. (85)

We now show how the ampli-
tudes and phases of the terms on
the right-hand side of equation
(84) can be found when they are unknown, by observing the forced vibrations.
. Suppose that we are able to vary k?, i.e. the period t of the free vibration.
The following effect will now occur: as T approaches a certain value t,, the
‘Bmplitude of the forced vibrations will rapidly increase, reach a maximum
then fall off on further variation of z; it will now remain small until © approaches,
: £ & new value T,, corresponding to a second maximum of amplitude of the type
j Just described, and so on.
3 These maxima are due to resonance with the individual external forces appear-
fﬂl!lg on the right-hand side of equation (84), and the values of 7, 7,, ... give
Bpproxi.mately the periods of the external forces. If we plot the periods of

Fia. 24

]
o
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the free vibrations along the axis of abscissae, and the amplitudes of the forced
vibrations on the axis of ordinates, we obtain a curve with several maxima

(Fig. 24). . . .
For 7 = 1; (or k = k; = 2=/7)), the term for which w; is near k; will be

large compared with the other terms in the sum (85). By observing experimentaflly
the maximum values of the amplitudes of the forced vibrations, and taking
these as approximately equal to the N;, we can use the formulae:
N ad ’*——‘____‘—_’g];—‘:-;: y
DY — wp) + 4 o}
whilst bearing in mind that k; is close to w;, to find the approximate values of
the intensities of the forces:
34. Impulsive external forces. We consider forced vibrations without friction,
o+ kte=f(@) (86)

and take a special type of external force f(t), acting only in a short interval

of time, from t = 0 to t = T', which rises from zero at the beginning of the

interval, reaches & positive maximum, then diminishes to zero (Fig. 25).
The general solution of equation (86) has the form [32]:

t
1 .
a =0, cos kt + C, sin kt -+ fjvf(u) sin k (¢ — ) du.
0
Let the system be in the equilibrium position with zero initial velocity at
t =0:

r y=f(t) @ ljmp = ' | oo = 0. (87)

We know that the particular solution
corresponding to these initial conditions is:

Y

t
m:TIC-Jf(u) sin & ({ — w) du,
0

Fig. 25
which we shall now investigate.
When t> T the integral reduces to the integral over the interval (0, T'),
since by hypothesis
fu)=0 for u>T.

Consequently,
T
’zlc— [f(u) sink(t —u)du for t>T.
0

T =

or

T T
xr = _llc_ sin ktjf(u) cos ku du — % cos kt Jﬂj(u) sin ku du.
0 0
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Since the function f(u) is positive by hypothesis in the interval (0, T), we
can apply the mean value theorem [I, 95] to the integral written:

T T
6Y f(u) cos ku du = cos k6, T { f(u) du
0

(0<6, and 0, < 1)
T T,
§ f(u) sin ku du = sin k6, T { f(u) du.
0 0
Let the duration T of the action of the external force be small compared
with the period of free vibration v = 2x/k.
Since kT’ = 2z T/t now becomes a small quantity, we can replace cos ko, T
by unity and sin k0,T by zero, so that we get:

1 .
T = TI sin kt, (88)

where
T
I={jna
0

is the magnitude of the impulse of the external force.

It is easily verified that (88) is identical with the formula for the solution
of the equation:

o +ktx=0
with the initial conditions [32]:
Tltup = 03 & fpag =1,

‘d.e. if the action of the external force is of small duration compared with the period
~of free vibration, the vibration of the system on cessation of the external Jorce will
Loccur as a free vibration with the system driven from its equilibrium position
“with initial velocity I.

35. Statical external forces. We now make a different assumption about the
orce f(t); we let the total interval of action of the force, (0, T'), be split into
vo intervals (0, 7)) and (7', T'), such that the force is increasing in the first
d decreasing in the second sub-interval; and we further suppose that the
: iod of free vibration v = 2z/k is small compared with the duration of the
@Mcrease (and decrease) of the force.

& We now solve equation (86) with initial conditions (87). We get by integration

Hy paris, and on noting that f(0) = 0:

t

1 u=t 1 -
.’D=767f(u) COSk‘(t——u) 4o ___ﬁjf/ (u) COSk(t—u) du =

(89)

t
=%f(t) - kisz (1) cos k(t — u) du.
0
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The first term f(2)/k? is called the statical deflection, produced by the force
f(t). We get this expression from (86) by neglecting the term z”, i.e. neglecting
the dynamic nature of the action of the force.

The second term is the correction that has to be given to the statical effect
in order to obtain the actual dynamic effect of the force. This second term
can be put in the form:

¢
——l:—zJ"f'(u)cosk(t—u)du=
0

t

t
= - -11—2 cos kt [/’ (u) cos ku du — le— sin ktJ/’ (v) sin ku du. (90)
0 o

Let us consider the interval of increase of the force, so that we have ¢t < T',.
In order to simplify the argument, we shall assume that the first derivative
f7(¢), which is positive in the interval (0, T), is diminishing, i.e. that the growth
of the force becomes slower in the course of time. We show that, given this
assumption, the two integrals on the right-hand side of equation (90) are small
in absolute value. We shall only discuss the integral containing sin ku, since
the other integral can be treated in & like manner.

We subdivide the total interval of integration (0, ¢) into half-periods of the
free vibration, /2 = n/k, and let the number of full half-periods included
in ¢ be m, so that:

T

™3

<t<(m+1)—;——.

We now have
2 z

‘th’ (w) sin ku du = f [ (u) sin ku du +- f f(u)sinkudu +... 4+

0 T

’ )
1 4

m-g t

§ f(w)sinkudu + § # () sinkudu,

T
(m—1) 5 m g

and the last interval (m7/2, ¢) will in general be less than /2.

Sinee sin ku does not change sign in each of the sub-intervals into which
the total interval has been divided, we can apply the mean value theorem
[I, 96] and, bearing in mind that kr = 27, we can write

G+ ¢+ 5
[ # () sin b du = f/(u5) _[ sin ku du =
S5 S5
1 u=(s+1) 5
=7 4 (us) [cos ku] . =
u=s ?

= L ) Ceos (o 1) 7 — cos ] = (= 1 - F/ () = (1) - f w9
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where
T

83

<ug< (s+1)—;—(s=0, 1, 2,....m—1).

Similarly, we have for the last interval:
t

J" f (v) sin ku du = (— l)m—:t—ﬂf’(u,,,), where 0 < 6 < 1 and m—g— <Uy <t
L 4

my

Hence we have:
t
Jf’ (u) 8in ku du = —:t— [F (wo) — 7 (uy) + F (uyy —o o .+
]

F (=D Wpey) + (— DT ()1

In view of our assumption regarding f’(t), the terms of the alternating series
decrease in absolute value on moving away from the initial term; the total
sum therefore has the (--) sign but is less than the first term [I, 123]:

t
' 0 <Jf’ (1) sim ke dus < - of” (o).
[

- For 7 small, 7f’(%,) is approximately equal to the increment of f(u) in the
~imterval (u,, u, + ) [I, 50], i.e. tf/(u,) is roughly equal to the change in the
force in an interval of time equal to the period of free vibration.
If this interval is so small by comparison with the total interval of increase
of the force that the above change in the force can be reckoned negligible,
the integrals

t t
ff’ () sin ku du and s‘ f (u) cos ku du
0 0

'lll be small in absolute value, and the second term on the right-hand side of
,{gquation (89) will, by (90), be a small quantity compared with the first term.
Precisely the same argument applies for the interval in which the force is

‘lecreasing. Hence, if the period of free vibration is small compared with the

"};*Mal duration of the action of the force, the deviation produced by the force can be

found from the statical deviation.
It follows from the above discussion that T must be so small by comparison

ot

‘_;With T that the change in the force during the interval T can be neglected.

If the derivative f’(t) is not always decreasing during the interval of increase
the force, but has a single maximum, as is often the case in practice, the argu-
Ient remains the same in essence as that given above. The only difference lies
in the fact that, in summing the alternating series, it has to be divided into two
8, and the prevailing term in the sum will be a middle term, corresponding

# Lo the particular interval in which the maximum of f’(t) occurs.

" The possibility of determining statically the deflection due to the external

; ;force is of importance in devices designed for recording this force. We shall
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take as an example the indicator of a steam engine. This amounts to a
cylinder with a close-fitting piston. The latter is subject to the pressure of
the steam and compresses an elastic spring.

Let s be the area of the piston, f;(¢) the pressure of the steam, k2 the rigidity
of the spring, m the mass of the piston, and # its displacement. The equation of
motion of the piston is

ma” = — kx4 8f, (1), or "+ krx={f(t),
where
k3 8/ (1)
k? = " and f(I) = —m

The value of z is given by (89). The second term on the right-hand side of
this expression represents the instrument error. For the error to be small,
the period of free vibration of the piston on the spring must be small compared
with the duration of the action of the force. Given this, the reading of the indi-
cator will approximate closely to the curve of f(t), i.e. to the curve of the external
force (to within a constant factor). If the pressure increases so rapidly, however,
that the change in pressure is significant during an interval equal to the period
of free vibration, the indicator readings will diverge considerably from the
pressure curve.}

36. The strength of a thin elastic rod, compressed by longitudinal forces

(Euler’s problem). If a thin, straight elastic rod 4B, the ends of which can

move along the line AB (Fig. 26), is subjected to two

lp forces P, acting on its ends and compressing it along its

Bg--- axis, distortion of the axis of the rod, leading to its collapse,

1 can occur at a critical value of the force. The problem of

finding the force capable of producing such distortion (the

problem of the so-called ‘longitudinal bending” of the rod)
was first stated and solved by Euler.

Let I be the length of the rod 4B, E the modulus of elas-

A | ticity of the material of the rod, and I the moment of iner-

y - tia of its cross-section, which we can take as constant over

TP all its length [16].

Fra. 26 Let OX be taken from the end 4 along the axis of the
rod to the end B, and let y denote the ordinate of the
elastic curve of the rod. The differential equation of the

elastic curve becomes in this case:tt

~,

d2y
= — 91
Bl —— Py (91)
or, putting ¢* = P/EI:
d2y .
=0. 92
T T¢Y=0 (92)

+ A more detailed account of this problem may be found in A. N. Krilov’s
article, ‘“Nekotorie zamechaniya o kresherah i indikatorah” in Izvestiya
Akademii Nauk, 1909.

+f The bending moment of one of the forces P is evidently (—FPy) for any
gection of the rod.

i 5

and the bending curve consists here of two half waves.
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The general solution of this equation is:

y = C, cos gz -+ 0, sin qz. (93)

The fact that the ends A, B must remain on axis OX gives us the condi-

tions:
Ylxmo = Ylxmy = 0. (94)

We notice that these are not initial conditions. Initial conditions specify
the value of the function y and of its derivative y’ for a definite value of z.
Conditions (94) specify only y, though for two values of the independent variable,
at the ends of the interval (0, l); they are called, in fact, boundary conditions.

We substitute 2 = 0 and @ = [ in the general solution (93):

-
0=C;; 0=C,cosql +C,singl and C,=0; CO,singl =0. (95)

These equations have the obvious solution C, == C, = 0, which. by (93),
gives ¥y = 0, i.e. the straight form of the rod. For distortion of the axis to be
possible, we must have C, # 0, which means that sin ¢/ = 0. Hence ¢ must
take one of the values:

__7!8
=7

(=0, 1, 2,...). (96)

The first solution 8 = 0 makes ¢ and y zero, and again gives the straight
elastic curve. The least non-zero value of ¢ is obtained for s = 1:

]
“w=7
On substituting this value in the equation ¢ = P/EI, we get the least value

of the force capable of producing distortion :

n? EI

P1=EIq1= 2 ’

(97)

¥

‘or the so-called critical force (Euler’s formula).
The curve along which the rod bends for P =P, will have the equation:

. n
y=0C,sin -z,

I

ie. consists of a half sine wave (Fig. 26). The state of equilibrium is unstable,

§'and considerable deformations are possible.

We find, on setting 8 = 2 in (96):

27
42=—l'

The equation of the axis of bending of the rod now becomes:

y=C,sin 27

z,
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The force P, needed to produce this deformation is:

2
P,= Elg} = %ELI— :
and is thus four times greater than the previous force.

On giving successive integral values to s, we get all the possible equilibrium
forms of the bending axis of the rod. These will consist of a corresponding
number of half sine waves, whilst the forces required for the appearance of
these distortions will be proportional to the square of the number of half waves.

It may be pointed out that differential equation (91) is approximate, in the
sense that the curvature of the bending axis of the rod is taken equal to the
second derivative; the equation therefore only applies in regard to small deforma-
tions of the rod. The conclusions drawn from general solution (93) of the equation
are not justified as regards forces P which produce considerable bendings of
the rod, and can clearly lead to absurd results.

Numerous experiments with long, thin rods have shown that the rod at
first preserves its straight shape with gradually increasing P, then suffers con-
siderable distortion of its axis on P reaching a value near Py, as defined by
(97); the bending thereafter increases with great rapidity as P continuesto
increase.

The role of the boundary conditions (94) must be mentioned. Given the initial
conditions, the solution of a linear equation is uniquely defined. A different
situation arises with boundary conditions, as we have seen. Particular values
(96) of the coefficient g in equation (92) exist, such that, given boundary condi-
tions (94), the equation has, apart from the obvious solution y = 0, solutions
which are defined up to an arbitrary constant factor. We shall meet with the
same situation in the example below [37].

37. Rotating shaft. Experiment shows that the following effect occurs on
rapid rotation of a long, thin shaft: as the angular velocity increases, it reaches
a certain value @ == o, at which the shaft no longer remains straight but begins
to wobble; as w increases further, stability is again achieved for a time, then is
lost again at w = w,, and so on. We explain the reason for this effect and the
method of calc